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Abstract: We focus on finding a correlation between the asymmetries of electroencephalography
(EEG) signals and subjective well‑being (SWB) when changed on short time scales via environmen‑
tal conditions. Most research in this field focuses on frontal alpha asymmetry. We systematically
examine different sensor locations and filter the sensor data into the delta band, the theta band, the
alpha band, the beta band, and the gamma band, or leave the EEG signal unfiltered. We confirm
that frontal alpha asymmetry is correlated to SWB. However, asymmetries between other sensors
and/or filtering the data to other bands also shows a linear correlation to SWB values. Asymmetries
of anterior brain regions show statistically significant results not only in the alpha band but also in
the delta band and theta band, or when the data is not filtered into a specific band. Asymmetries of
posterior regions show a trend to be correlated to SWB when EEG activity is higher on the opposite
hemisphere and filtered into different frequency bands. Thus, our results let us conclude that focus‑
ing just on frontal sensors and the alpha band might not reveal the whole picture of brain regions
and frequency bands involved in SWB.

Keywords: electroencephalography; EEG; brain‑signal asymmetry; lateralization; subjectivewell‑being;
SWB; environmental conditions

1. Introduction
Since its introduction in 1929 [1], human electroencephalography (EEG) has become

a very important tool in clinical applications and research. EEG recordings are often ana‑
lyzed in different frequency bands. As discussed, for example, in [2], the specific frequency
interval chosen for each frequency band varies from study to study. We use the following
intervals for the frequency bands: the delta band (0.5–3 Hz), the theta band (4–7 Hz), the
alpha band (8–13 Hz), the beta band (14–30 Hz), and the gamma band (>31 Hz). Despite
the fact that the limits of those frequency bands are not always defined in exactly the same
way and that there are also different sub‑bands of interest, each of the above‑mentioned
frequency bands seems to stem from activities originating in different areas of the brain
and also plays an important role in different brain functions. The lowest frequency band,
i.e., the delta band, is important for motivational processes, and the theta band plays a sig‑
nificant role in memory and emotional regulation [3]. Alpha oscillation, on the other hand,
seems to serve inhibitory processes [3]. The beta band supposedly signals the status quo
for movement as well as cognition [4]. The highest frequency band, namely, the gamma
band, increases when any sort of change or attention is required [4]. Even though those
frequency bands seem to have different functions, they also influence each other and are
not independent from each other, e.g., the alpha band is reportedly influenced by other
frequency bands, such as the theta band or the beta band [5,6].
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At first sight, the brain might seem symmetrical in many ways, e.g., in shape, dy‑
namics, and communication processes. However, it is already known that it is actually
asymmetric; see [7–9]. One method to measure those asymmetries, which we will also use
in this paper, is EEG. Such an asymmetry measured by EEG was already reported in the
early years of EEG research, e.g., [10,11]. The most studied EEG asymmetry is by far the
frontal alpha asymmetry (FAA). This asymmetry was shown to be internally reliable and
quite stable over time [12–15]. A more recent paper with a large cohort of participants [16]
concluded that the less discussed parietal EEG alpha asymmetry is even stabler than the
frontal EEG alpha asymmetry. Ocklenburg et al. [17] investigated asymmetry in different
frequency bands and locations. They found the highest significant hemispheric asymmetry
in the alpha band but also in the theta band, and the beta band showed significant hemi‑
spheric asymmetry while the delta band failed to reveal such an asymmetry. Focusing on
the sensors of the EEG, they found a positive asymmetry, representing a greater power
on the right hemisphere than on the left for the alpha band over the electrode sites C3/C4,
P7/P8, and also FC3/FC4. The electrode sites C3/C4 also showed a positive asymmetry for
the theta band and the beta band. Some other combinations of sites and frequency bands
showed strong trends but could not reach statistical significance. The most investigated
combination of F3/F4 asymmetry in the alpha band failed to reach statistical significance
in this study by Ocklenburg et al. When focusing on regions of interest rather than on spe‑
cific electrodes, they reported a significantly rightward asymmetry for central and parieto‑
occipital areas in the alpha band and a leftward asymmetry for frontal areas in the delta
band. The authors also pointed out that the asymmetries of data filtered into different fre‑
quency bands are not independent of each other. They found that the average asymmetries
of data filtered into the alpha band correlate with those of the delta band, the theta band,
and the beta band. Moreover, results from the beta band were correlated with those from
the delta band, which again showed a correlation to the theta band [17]. The previously
mentioned study [16] replicated the results for the parietal alpha asymmetry but did not
report the same results for the frontal sensors. Thus, the authors concluded that the spe‑
cific EEG system and sensor locations have an influence on the results and recommended
including multiple electrode pairs in alpha asymmetry analyses [16].

Besides a general asymmetry in the brain, asymmetries have also been shown to be as‑
sociated with different mental‑related or emotion‑related states. The correlation between
FAA andmental health has been the subject ofmost of the literature in this field; see [18] for
a review. Some examples include the following: higher FAA was associated with higher
self‑reported subjective well‑being (SWB) [19] or with lower depression and anxiety [20].
However, there are also studies that contradict those results. Generally, there is a huge
heterogeneity in the study designs and data processing. Even though the correlation be‑
tween FAA and depression has gained a lot of attention, van der Vinne et al. concluded in
their review that FAA cannot be seen as a reliable diagnostic biomarker for major depres‑
sive disorder [21]. FAA is said to reflect approach and avoidance impulses and seems to
be involved in top‑down control when regulating emotions; see, for example, [22,23]. For
further information on this topic, we refer to themeta‑analysis in [24] or the cross‑sectional
study in [25].

Davidson discussed already awhile ago the importance of distinguishing between an‑
terior and posterior differences when focusing on hemispheric activation [26]. However,
up to today, the differences and correlations between anterior and posterior regions are
not fully understood. Henriques and Davidson reported a difference in alpha asymme‑
try over frontal but also posterior regions as a marker for depression [27]. Those findings
were supported by newer research, e.g., [28,29]. Such a parietal alpha asymmetry was
also associated with posttraumatic stress disorder (PTSD) [30], the risk for major depres‑
sion disorder [31], or attentional bias to threat [32]. Moreover, asymmetries in frequency
bands other than the alpha band have also been reported to correlate to mental conditions.
EEG beta asymmetry was found to be correlated to attention deficit hyperactivity disorder
(ADHD) [33,34] and, when focused on frontal areas, could be used to predict trait aggres‑
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sive tendencies and behavioral inhibition [35]. Asymmetries of parieto‑occipital areas in
the alpha band and the beta band were correlated to the hedonic valuation of food [36].
Asymmetries have also been related to sleep stages; namely, asymmetries of the first sleep
stage were found to be decreased over fronto‑central areas in the delta band, the theta
band, the upper alpha band, and all three defined sub‑bands of the beta band, whereas an
increasewas observed in parieto‑occipital areas in the theta band, the two alpha sub‑bands,
and in two out of three beta sub‑bands [37]. A study from 2021 included over 300 partici‑
pants and found no association between multidimensional well‑being and FAA. However,
they reported a correlation in the temporo‑parietal areas with lower left than right activity,
corresponding to higher well‑being levels. For the delta band, the theta band, or the beta
band, they did not find any correlation between asymmetries and well‑being [38].

In this paper, we will focus on SWB and its correlation to EEG asymmetries. Different
terms for similar conditions have been used. Those include for example “subjective happi‑
ness” [39], “psychological well‑being” [40], or “quality of life” [41]. It is also closely related
to “comfort”; see [42] for a discussion about differences and similarities between some of
those terms. There is a relationship between well‑being and the brain; however there, is
still a lot that is currently unknown [43]. Many studies use questionnaires, such as the
five‑item World Health Organization Well‑Being Index (WHO‑5), to determine SWB [44].
Wewill use an expanded Likert scale [45] for determining SWB on a scale from 1 to 10, and
details can be found in Section 2.1.

In our previous work, we could show that a correlation between FAA and SWB also
holds for short‑time scales [46]. This expands previous knowledge, which described this
correlation on larger time scales andwhen psychological or psychiatric interventions were
performed. We now extend our previouswork and see if we can find a correlation between
the asymmetries of different electrode sites as well as different frequency bands to such a
short‑term SWB. As discussed above, the role of asymmetries in frequency bands other
than the alpha band is not often reported in the literature. Furthermore, a majority of the
studies in this field focus on frontal areas. Hence, we want to shed some light into less
researched frequency bands and sensor locations.

The three main research questions we aim to answer in this work are the following:
(RQ1) Is there a correlation between short‑term SWB and EEG asymmetries filtered

in frequency bands other than the alpha band?
(RQ2) Do the sensor locations influence those results, especially anterior versus pos‑

terior sensor asymmetry?
(RQ3) Does re‑referencing the EEG signals change the results?

2. Materials and Methods
2.1. Experiment

The experimentwas conducted in 2022 and first analyses of this datawith the focus on
FAA are already published in [46]. Before starting the experiment, we obtained approval
of the local ethics committee at Osaka University. We recruited 30 students from Osaka
University (28 right‑handed, 2 left‑handed, 16 males, 14 females, ages 22.3 ± 4.2 years).
The goal of the experiment was to change SWB on a short time scale by changing the en‑
vironmental conditions. The experimental room was located at Suita Campus of Osaka
University. We divided the room with partitions into an area of 1.4 m × 2.1 m. A desk,
a chair, shelves with temperature–humidity sensors, heating devices, humidifiers and de‑
humidifiers were placed within this area. The participant came to the experimental site
and, after an explanation of the experiment in either Japanese or English, signed a written
consent form. An EEG headset (EPOC+, EMOTIV, San Francisco, CA, USA) was placed
on the participant. The participants were sitting on the chair at the desk during the runs
and were asked to rate their SWB on a scale from 1 to 10 every 30 s. A SWB value of
10 should represent the most comfortable feeling with the physical environment in terms
of temperature–humidity and overall well‑being. A SWB value of 1 should stand for the
least comfort and make the participant want to leave the situation immediately. The ex‑
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perimenter reminded the participants every 30 s by saying the word ‘number’ to state
their SWB during each EEG recording. We recorded EEG data for up to 9 min for each
of the six different temperature–humidity settings in the room, namely, low, middle, and
high temperatures in combination with low and high humidities. The specific values, as
measured with temperature–humidity sensors of [47], can be found in the Supplementary
Material of [46]. After finishing a run, the participant could relax and the experimenter
changed the temperature and humidity of the room with off‑the‑shelf equipment to the
next temperature–humidity setting. This was repeated until either all 6 runs were per‑
formed or the scheduled time for the session was over.

2.2. Asymmetry Calculation
The EEG headset used for the experiment is equipped with 14 electrodes, namely,

AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. The layout follows the
standard 10–20 system. The common mode sense (CMS) is located at P3 and the driven
right leg (DRL) at P4. This device operates using sequential sampling with a single analog‑
to‑digital converter and an internal sampling rate of 2048 Hz which can be down‑sampled
to either 256 or 128 Hz. We chose the down‑sampling rate of 128 Hz in our experiment.
The recording bandwidth was 0.16–43 Hz and a digital notch filter at 50 and 60 Hz was
applied automatically.

For the EEGpreprocessing, wewrote aMATLAB (R2022a) [48] pipeline using EEGLAB
(v2022.0) [49] followingHAPPE (The Harvard Automated Processing Pipeline for Electroen‑
cephalography) [50], making use of MARA (Multiple Artifact Rejection Algorithm) [51,52].
We refer the interested reader to our last paper [46] for all details about the EEG prepro‑
cessing steps. After loading the EEG data as EDF (European Data Format) files and dis‑
abling non‑EEG channel recordings, we identified the sensors locations by their names
in the 10–20 system. The next step was detrending, followed by performing bad channel
detections based on probability, also performed twice as in [50]. After a wavelet‑ICA (in‑
dependent component analysis), our pipeline used MARA, which automatically flags and
rejects artifact components of EEG data [51,52]. MARA has been shown to be very effec‑
tive when it comes to removingmuscle artifact components, see, e.g., [50]. Hence, no other
steps to eliminate such artifacts were performed.

After applying the EEG preprocessing pipeline, we chose specific time intervals for
the asymmetry calculation. In our previouswork, whenwe focused on FAA,we found that
10 s up to the time when SWB was reported by the participants was the ideal interval for
the asymmetry calculation. Hence, we used those same time intervals here. After choosing
two channels, ch1 and ch2, and making sure that they were not marked as bad channels
during the preprocessing step, the time series of the specific interval was filtered in the
frequency interval of interest, i.e., delta from 0.5 to 3 Hz, theta from 4 to 7 Hz, alpha from
8 to 13Hz, beta from 14 to 30Hz, gamma from 31 to 100Hz, or ‘non’ from 0.5 to 100Hz. The
upper bound of 100 Hz for the gamma band and the non band was just arbitrarily selected
because the algorithm needs an upper limit. The EEG headset records on a bandwidth
between 0.16 and 43Hz; therefore, the actual upper limit for our recordings was 43 Hz. We
also included the non band in our analyses to be sure that differences in results were not
due to the computational filtering step but indeed from a specific frequency band. Then,
we followed the descriptions given in [53,54] and computed the Fast Fourier Transform
with a 50% overlapping Hanning window. The power density of the chosen frequency
band was calculated for ch1 and ch2 in each chosen interval, i.e., from 10 s before up to the
time the SWB was reported. The asymmetry Asym was then determined by subtracting of
the natural logarithm of the power density of ch1 filtered into the specific frequency band,
denoted as band in the formula, minus the natural logarithm of the power density of ch2
filtered into band via the formula

Asymband(ch1, ch2) = mean(log powband(ch1)− log powband(ch2)), (1)
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with log being the natural logarithm, powband(ch1) the power spectrum of the signal on the
first channel ch1, and powband(ch2) being the power spectrum of the second channel ch2,
both filtered into the specific frequency band, denoted as band.

2.3. Re‑Referencing the Data
Making the right choice for the reference electrode is very challenging; see [55] for a

discussion. The popular Cz reference was reported to under‑ or overestimate activity and
showed lower correlation to other reference schemes [56,57]. The current‑source density
(CSD) transformation was successfully used in several papers, e.g., [58–60]. One caveat
of this method is that it does a poor job on sparse EEG headsets. For example, the au‑
thors of [55] state that a number of 60 channels works well for the CSD transformation.
Thus, such a transformation is not suitable for our EEG headset. The reference electrode
should be located as far away as possible from the EEG sensors of interest to obtain re‑
liable results. The posterior sensors, especially T7 and P7, are located closely to the ref‑
erence electrode, which might yield invalid asymmetries. Thus, the same analysis was
performed for all posterior sensors, i.e., T7, P7, O1, O2, P8, and T8 in our setup, but with
an additional re‑referencing step to either AF3 or F3. One might argue that especially AF3
might be influenced by ocular signals. Although such signals should have been eliminated
during the preprocessing step, we chose two different new reference electrodes for com‑
parison. An overview of the workflow from the recorded EEG and SWB values to the final
Asymband(ch1, ch2) pairs is shown on the left in Figure 1. The yellow part represents the
optional re‑referencing step for the posterior sensors. Moreover, the EEG sensor layout
and the time intervals used for the Asym calculations are shown on the right of Figure 1.
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2.4. Averaging over Different Sensors
Another issue when it comes to calculating EEG asymmetries, especially FAA, is that

there is no consensus in the literature onwhich specific EEG sensors to use. In our previous
work [46], we chose AF3 and AF4 for the calculation of FAA. However, F7 and F8 are also
popular choices. To eliminate the choice of two specific EEG sensors, we divided the brain
into quadrants, i.e., right and left anterior as well as right and left posterior. The sensors
in the specific quadrants were averaged, i.e., AF3, F3, F7, and FC5 for the left anterior
quadrant, AF4, F4, F8, and FC6 for the right anterior quadrant, T7, P7, and O1 for the left
posterior quadrant, and T8, P8, and O2 for the right posterior quadrant. Those averaged
signals were then used as ch1 and ch2 in Equation (1) for the calculation of Asym.

2.5. Correlation between Asym and SWB
Now we have Asym corresponding to the SWB for each interval of one participant,

the next step is to determine a relationship between those two values. In [46], we showed
that there is a positive linear correlation between Asymalpha(AF4, AF3) and SWB.Here, we
want to test whether there are combinations, other than AF4/AF3 and the alpha band, that
also give a linear correlation between the asymmetry and SWB. Despite using different fre‑
quency bands and different channels for the calculation, we encounter the same problem
that we had when trying to find a correlation between FAA and SWB in [46]; namely, we
have an imbalanced data set. Most participants reported SWB values of 6, 7, or 8 more
frequently than SWB values of 1, 2, 3, or 10. Performing a linear regression without ac‑
counting for that imbalance would lead to overfitting the more frequently reported values
and underfitting the less frequently reported values. Hence, we used SMOTE (Synthetic
Minority Over‑Sampling Technique) as described in [61] and implemented in imbalanced‑
learn (0.10.1) [62] using python (3.9.18) [63] and scikit‑learn (1.1.3) [64]. This technique
creates synthetic data points that follow the same empirical distribution as the original
data. Before applying SMOTE, we first checked whether each SWB value given by the in‑
dividual participant was reported at least 3 times, which is the minimum number of data
points needed for the method to run. If one SWB value was given less than 3 times, this
specific SWB value and its Asym values were deleted. Then, we also excluded data from
participants if they ended upwith less than 3 different SWB values. This was done because
with less than 3 SWB values, a linear regression is not reasonable. After applying SMOTE
to the remaining data, we ended up with a balanced amount of (Asym, SWB) pairs per
given SWB value. Then, a linear regression was performed using the method in [64]. Since
SMOTE gives slightly different results each time, it was repeated 10 times per participant.
The 10 slopes and intercepts per individual participant were then averaged. Finally, we
tested for a linear relationship using a two‑sided t‑test to see if the slope is different from
zero and determined the p‑value and the 95% confidence interval (CI) via the method in
scipy (1.12.0) [65].

2.6. Overall Statistical Analysis
The algorithm described above was run for all combinations of sensors and bands.

Since we performed a lot of statistical tests, we must assume that some of the statistically
significant results are actually Type 1 errors (false positives). If many outcomes are tested
for statistical significance, some may appear statistically significant with a p‑value smaller
than 0.05 simply by chance and not because of a true underlying significance. One possible
solution for such a multiple comparison problem is the Bonferroni correction. However,
this correction is very conservative and also increases the risk of introducing Type 2 errors
(false negatives). So, we decided not to use the Bonferroni correction but instead focus on
the false discovery rate (FDR), which controls the proportion of errors made when reject‑
ing hypotheses and is described in [66]. More specifically, we used the expansion from
independent or positively correlated tests to generally dependent tests from [67], as im‑
plemented in statsmodels (0.14.0) [68]. We decided to choose an alpha of 0.1, i.e., 10% of
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our results are expected to be false positives, because we wanted to prioritize sensitivity
over specificity.

3. Results
In this section, we will focus on the most significant results. Since it is not fully clear

how handedness affects asymmetries, see [16,17] for a discussion. We excluded the two
left‑handed participants from our analyses. Another participant reported less than three
different SWB scores and, thus, was also excluded.

3.1. Results with the Original Reference Electrode
First, we present the results using the original reference electrode. We analyzed asym‑

metries between all contralateral sensors in the anterior and all contralateral sensors in the
posterior regions. We did not calculate asymmetries between frontal and posterior con‑
tralateral sensors because of the general anterior–posterior difference, which was already
reported in the literature a while ago [26]. Moreover, in order to compare our results to the
FAA literature, we choose the ch1 from the right hemisphere and ch2 from the left hemi‑
sphere. The alpha in the Benjamini–Yekutieli FDR procedure was set to 0.1. Correlations
which turned out to be statistically significant are listed in Figure 2. Each channel combina‑
tion in Figure 2 includes the channel AF4. The combination of ch1 = AF4 and ch2 = F7 is
of special interest, as it proves to be statistically significant for each frequency band except
the beta band and the gamma band.
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Figure 2. Statistically significant results of the analyses with the original reference system. (a) The
first column shows the considered frequency band. Entries in the second and third columns give
the EEG channels used for ch1 and ch2 in Equation (1). The fourth column shows the p‑value of the
two‑sided t‑test. The fifth and six columns give the lower and upper bound of the CI of the slope of
the linear correlation, respectively. The remaining column gives the adjusted p‑value as calculated
via the Benjamini–Yekutieli FDR procedure. (b) The figure provides a graphical representation of
the findings. Different line colors represent different frequency bands.

Figure 2 does not include any posterior sensors. To investigate the relationship of
posterior sensors further, we now focus on just the posterior region, i.e., sensors T7, P7,
O1, T8, P8, and O2. In Table 1, we list the results of Asym from the posterior pairs for
which the analysis reaches an unadjusted p‑value under 0.1. We see that no asymmetry
calculation is listed for EEG data in the delta band or the alpha band. Furthermore, either
the lower or the upper bound of the CI is always close to 0.
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Table 1. Results of the analyses with the original reference electrode for sensor combinations in the
posterior regions and unadjusted p < 0.1: The first column shows the considered frequency band.
Entries in the second and third columns give the EEG channels used for ch1 and ch2 in Equation (1).
The fourth column shows the unadjusted p‑value of the two‑sided t‑test. The last two columns give
the lower and upper bounds of the CI of the slope of the linear correlation, respectively.

Band ch1 ch2 p‑Value CIlow CIhigh
Theta T8 P7 0.067 −0.47 0.02
Theta P8 O1 0.063 −0.72 0.02
Beta O2 P7 0.054 −0.95 0.01

Gamma O2 P7 0.042 −1.05 −0.02
Gamma T8 O1 0.046 0.01 1.43
Non O2 P7 0.031 −1.25 −0.07
Non T8 O1 0.052 −0.00 1.05

3.2. Results after Re‑Referencing the EEG Data
The next results we present are those from analyses after re‑referencing the EEG data.

We start with the results for AF3 as the new reference sensor. The signals at the posterior
sensors (T7, P7, O1, O2, P8, and T8) were re‑referenced to the frontal sensor AF3 while
the rest of the analyses remained the same. Table 2 shows the results of the analyses that
yielded an unadjusted p‑value of less than 0.1 Comparing this table to Table 1, we see that
after re‑referencing, more tests yielded an unadjusted p‑value smaller than 0.1. Moreover,
results can be found in all frequency bands considered. However, Table 2 can just be seen
as trend results since none of the results are statistically significant after performing the
Benjamini–Yekutieli FDR procedure.

Table 2. Results of the analyses with AF3 as reference electrode for sensor combinations in the poste‑
rior regions and unadjusted p < 0.1: The first column shows the considered frequency band. Entries
in the second and third columns give the EEG channels used for ch1 and ch2 in Equation (1). The
fourth column shows the unadjusted p‑value of the two‑sided t‑test. The last two columns give the
lower and upper bounds of the CI of the slope of the linear correlation, respectively.

Band ch1 ch2 p‑Value CIlow CIhigh
Delta O2 T7 0.048 −0.55 −0.00
Theta P8 P7 0.096 −0.66 0.06
Theta P8 O1 0.026 −0.62 −0.04
Alpha O2 P7 0.011 −0.93 −0.13
Alpha T8 P7 0.026 −0.71 −0.05
Beta T8 T7 0.094 −1.08 0.09
Beta O2 P7 0.014 −1.52 −0.19

Gamma O2 T7 0.078 −0.92 0.05
Gamma O2 P7 0.047 −1.30 −0.01
Non O2 T7 0.056 −1.10 0.02
Non O2 P7 0.024 −1.84 −0.14

Then, we performed the same analysis but re‑referenced the posterior sensors to the
frontal sensor F3; see Table 3. Compared to Table 1, we obtain again more channel pairs.
Analogous to Table 2, results in all frequency bands appear. Tables 2 and 3 are similar
but not identical, and we want to point out that also the entries in Table 3 can just be seen
as trends since no p‑value passed the statistical significance after the Benjamini–Yekutieli
FDR procedure with an alpha equal to 0.1.
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Table 3. Results of the analyseswith F3 as reference electrode for sensor combinations in the posterior
regions and unadjusted p < 0.1: the first column shows the considered frequency band. Entries in the
second and third columns give the EEG channels used for ch1 and ch2 in Equation (1). The fourth
column shows the unadjusted p‑value of the two‑sided t‑test. The last two columns give the lower
and upper bounds of the CI of the slope of the linear correlation, respectively.

Band ch1 ch2 p‑Value CIlow CIhigh
Delta O2 T7 0.033 −0.54 −0.02
Delta O2 P7 0.046 −0.64 −0.01
Delta P8 P7 0.060 −0.57 0.01
Delta P8 O1 0.079 −0.52 0.03
Theta P8 O1 0.048 −0.62 −0.00
Alpha O2 P7 0.050 −0.86 0.00
Beta O2 P7 0.009 −1.54 −0.25

Gamma O2 T7 0.053 −1.58 0.01
Non O2 T7 0.094 −1.15 0.10
Non O2 P7 0.023 −2.12 −0.17

3.3. Results from Signals Averaged over Brain Quadrants
Finally, we focused on averaging the signals from the left anterior quadrant, i.e., AF3,

F3, F7, and FC5, and the right anterior quadrant, i.e., AF4, F4, F8, and FC6, with the original
reference electrode, and also averaged the electrodes on the left posterior quadrant (T7, P7
and O1) and the right posterior quadrant (T8, P8, O2) for both new reference electrodes,
i.e., AF3 and F3; see Section 2.4. Those averaged signals were then again correlated to the
corresponding SWBvalue, followed by a statistical analysis. Table 4 shows the results from
these analyses. Statistically significant results with p < 0.1 can be found in all bands except
the delta and gamma bands. There are results for the asymmetries of anterior and posterior
quadrants; however, again, none of those pass statistical significance via the Benjamini–
Yekutieli FDR procedurewith an alpha equal to 0.1. Looking at Table 4, we see a trend for a
reversed direction, i.e., for anterior quadrants, the correlation slope of the linear correlation
is positive, whereas for the posterior regions it shows a negative trend. When it comes to
the posterior quadrants, it is worth noticing that only results with data re‑referenced to F3
showed an unadjusted p‑value under 0.1. Neither the original data nor re‑referencing to
AF3 could show any trends.

Table 4. Results of the analyses from averaged quadrants with unadjusted p < 0.1: the first column
shows the considered frequency band. The second column gives the location of the quadrants, i.e.,
anterior or posterior. The next column shows the re‑referenced electrode for the analysis. This is
followed by columns showing the unadjusted p‑value and the lower and upper bounds of the CI of
the two‑sided t‑test.

Band Area Re‑Ref p‑Value CIlow CIhigh
Theta anterior ‑ 0.016 0.15 1.33
Alpha anterior ‑ 0.019 0.16 1.64
Non anterior ‑ 0.058 −0.05 2.51
Beta posterior F3 0.073 −1.24 0.06
Non posterior F3 0.074 −2.26 0.11

4. Discussion
We systematically analyzed the correlation between the asymmetries of pairs of indi‑

vidual EEG sensors and averaged over brain quadrants when filtering the EEG signal into
different frequency bands. The literature mostly focuses on FAA, which we also studied
in our previous work [46]. In that work, we showed that FAA is correlated to short‑term
SWB. Here, we went a step further and analyzed whether such a correlation also holds for
asymmetry values calculated from other sensors than AF4 and AF3 and/or when filtering
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into different frequency bands. We specifically did not predefine a direction of the asym‑
metry, i.e., we checked for more activity in the right hemisphere compared to the left but
also vice versa. Moreover, we included asymmetries from all sensors to each other, not
just from hemispheric counterparts. This was done for two reasons. First, we wanted to
make sure that asymmetries do not just appear for different sensors in the EEG headset,
and second, we used a headset with a low number of sensors and fixed sensor locations, so
it was not possible to adjust for head shape. When setting up the experiment, we tried to
find the best fit of the EEG headset, but because of those shortcomings and the fact that we
did not check the specific sensor location using MRI, we analyzed all sensor combinations
so as not to miss any results that might be due to an inaccurate sensor location.

4.1. Discussion of the Results with the Original Reference Electrode
The first result, presented in Section 3.1 and Figure 2, shows a statistically significant

positive linear correlation between Asym and the short‑term SWB for different sensor com‑
binations and frequency bands. Hence, we can answer (RQ1) with the following: Yes, there
is a correlation between short‑term SWB and EEG asymmetries in frequency bands other than the
alpha band. Among all the sensor pairs whose Asym shows a statistically significant corre‑
lation to SWB, the sensor with the higher power is located on the right hemisphere. All
statistically significant results are from the Asym ofAF4 combinedwith other sensors in the
frontal areas. Of specific interest is the combination of AF4 with F7, i.e., Asym(AF4, F7),
which has a positive linear correlation to SWB in any frequency band except the beta band
and the gamma band. As those sensors are located in the frontal area, our results replicate
the results in the literature: however, the two sensors are not each other’s exact hemispher‑
ical counterparts. We cannot comment on the importance of this finding because we did
not confirm the exact location of the sensors. Hence, it is not entirely clear how accurately
we can talk about the specific underlying brain areas. To our knowledge, there is no paper
that discusses the specificmeaning of an asymmetry between one brain region and another
which is located slightly next to its hemispheric counterpart. The main conclusion here is
that brain activity is lateralized and, when correlated to short‑term SWB, a higher activity
on the right than on the left is observed in frontal areas in different frequency bands.

Next, we turn to the comparison of anterior results to posterior results. In Figure 2,
no combination of posterior sensors appears. We answer (RQ2) with the following: Yes, the
sensor locations do influence the results. We could not find statistically significant results for
sensors in the posterior brain region. In order to further investigate this topic, we looked
at unadjusted p‑values to see if there was any trend visible. Table 1 gives the results of
the analyses with an unadjusted p‑value of 0.1. Although they are not statistically signif‑
icant, the asymmetries of some posterior sensors show a trend towards having a linear
correlation with short‑term SWB. What is interesting here is that trends can be found for
all considered frequency bands except the delta band and the alpha band.

4.2. Discussion of Results after Re‑Referencing the EEG Data
As discussed in Section 2.3, re‑referencing EEG data to a different reference electrode

was reported to influence asymmetries. Thus, we performed the same analyses as before
but limited to the sensors T7, P7, O1, O2, P8, and T8 and added a re‑referencing step in the
analyses. We chose two different new reference electrodes, AF3 and F3. The results with
the re‑reference electrode AF3 are shown in Table 2. These results again should be consid‑
ered only as trends since they are not statistically significant after the Benjamini–Yekutieli
FDR procedure with an alpha equal to 0.1, and the stated p‑values are unadjusted. We see
that after adding a re‑referencing step, we find trends for all considered frequency bands.
Similar but not identical trends were found when using F3 as the new reference electrode;
see Table 3. Again, this table shows that unadjusted p‑values and are not statistically sig‑
nificant after the Benjamini–Yekutieli FDR procedure with an alpha equal 0.1. The combi‑
nation of O2 and P7 seems to be of specific interest in the posterior region because their
Asym filtered into different frequency bands indicates a trend to be linearly correlated to
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short‑term SWB. This leads us to the following answer (RQ3): Yes, re‑referencing the EEG
signal changes the results. In this way, re‑referencing makes the trend towards statistical sig‑
nificance stronger; however, in our case, it does not reach statistical significance. This is in
alignmentwith the literature that already discussed the influence of the reference electrode
on asymmetries (see Section 2.3).

We can conclude that there is a trend towards a linear correlation between the EEG
asymmetry of posterior regions and short‑term SWB, which hints towards a lateralization
in the posterior regions. It is important to point out that the asymmetry of the posterior
regions is in the opposite direction to that of the anterior regions. In other words, the slope
of this trend is negative. This means that, here, less power of a specific frequency band
on the right is correlated to short‑term SWB. We find again that the sensor location of the
seemingly most important combination of O2 and P7 are not their exact hemispheric coun‑
terparts, but sensors are located close to them. The reasons for that are probably similar to
those for the anterior areas, which we discussed in Section 4.1.

4.3. Discussion of Results from Signals Averaged over Quadrants
Since it is not fully clear to which extent the exact sensor location influences the re‑

sults, we performed some analyses, where we averaged EEG signals from all sensors in the
left anterior quadrant (AF3, F3, F7, and FC5) and all sensors located in the right anterior
quadrant (AF4, F4, F8, and FC6). Then, we analyzed whether Asym from the EEG signal
averaged over those quadrants yielded any statistically significant results when correlated
to SWB. Analogous analyses were performed with averaged signals from all sensors in
the left posterior quadrant (T7, P7, and O1) and right posterior quadrant (T8, P8, and O2)
for different reference electrodes. The results (p < 0.1 unadjusted) can be seen in Table 4.
First, we see that by filtering into different bands yields trends for the comparison of differ‑
ent quadrants, i.e., for the correlation between Asym and SWB of anterior quadrants, we
find trends for the theta band and the alpha band, whereas for the posterior quadrants the
beta band shows a trend towards a linear correlation. Not filtering the EEG signal (non
band) leads to a correlation trend between the Asym from both the anterior and posterior
quadrants and short‑term SWB. Filtering in the delta band or gamma band did not give any
trends. When comparing the results from anterior and posterior quadrants, we see that the
direction of the asymmetry is again reversed. More power of the specific frequency band
in the right anterior quadrant than in the left anterior quadrant resulted in a correlation to
SWB, whereas more power in the left posterior quadrant than in the right posterior quad‑
rant correlated to SWB. The unadjusted p‑value for analyses from the anterior quadrants
are lower and the CI bounds are farer away from 0, which makes those results more valu‑
able than the results for the posterior quadrants. However, again, none of the results show
statistical significance after the Benjamini–Yekutieli FDR procedure with an alpha equal to
0.1 and thus just show trends. Another point to keep in mind is that just re‑referencing the
EEG signal to F3 yielded trends for posterior quadrants, whereas re‑referencing for AF3
or keeping the original reference electrode did not. This again points to the importance of
the reference electrode when it comes to asymmetries.

When considering the different frequency bands, we notice that analyses including
anterior quadrants show a trend towards statistical significance in the theta band and the
alpha band. This is not surprising since FAA is the most researched among the EEG asym‑
metries, and, as we could also show in our previous paper [46], FAA is correlated to short‑
term SWB. So, finding a correlation between the Asymalpha of the averaged EEG signal from
all frontal sensors and not just AF4 andAF3 to SWBwas expected, especially because there
is no consensus in the literature onwhich two frontal sensors to use when calculating FAA,
and results using different sensors from the frontal areas were reported. The correlation
between EEG asymmetries when filtered into the theta band is less reported. Our study
points towards the correlation between asymmetries of anterior sensors filtered in the theta
band being equally significant to those filtered in the alpha band when correlating those
values to short‑term SWB. The beta band seems to be important when it comes to asym‑
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metries in the posterior quadrants. Reports about a correlation between beta asymmetries
and mental states are rarely found but were reported to correlate with ADHD and the val‑
uation of food [33,34,36]. We conclude that the asymmetries of posterior quadrants when
filtered in the beta band might also be suitable for measuring SWB, at least when SWB is
varied on a short‑term basis.

4.4. General Discussion
We also analyzed all our results without filtering into any frequency band, referred to

as the non band. We did this because frequency bands, while having some neuroscientific
meaning, are used very inconsistently throughout the literature. During our analyses, the
non band often resulted in statistically significant results. This might be due to the fact
that the most important frequency band is the dominant one and thus also dominates the
asymmetry calculationwithout specific filtering. This result might also be of interest when
considering low cost and fast EEG preprocessing. Moreover, the specific sensor location
might not even be that important, but the region is. We hypothesize that our results would
also hold for just one sensor in the anterior right and one sensor in the anterior left side,
or analogous for the posterior regions. If such an EEG system proved to be successful, it
might find an application in smart‑home environments where it could be used to control
the environment (e.g., air conditioner, light, aroma, etc.) to change a person’s SWB in
the physical environment [69,70]. Knowing that filtering the signals is not necessary to
find a correlation between EEG asymmetries and short‑time SWB might be useful to save
computational power and time in such a smart‑home application.

4.5. Limitations of the Study
Finally, we want to mention some of the limitations of our study and the results pre‑

sented in this paper. First, we want to point out that our study focuses on short‑term SWB.
We evaluated SWB every 30 s for a maximum of 9 min. Since this is a very short time
interval, we cannot conclude that our results will also hold for long term SWB. In order
to capture the whole extent of the correlation between EEG asymmetries and SWB, our
findings would also have to be evaluated on longer time scales.

We did not discuss any neurobiological explanations for the observed correlation be‑
tween EEG asymmetry and short‑term SWB. The literature on the neurobiology of well‑
being already exists, e.g., [71], but further research has to be conducted to see how such
mechanisms hold for short‑term changes of SWB.

We discussed the fact that the reference electrode has an effect on asymmetry. Thus,
we advise the reader to always keep that in mind when focusing on EEG asymmetry re‑
search or when comparing results of studies with different EEG reference electrodes.

Another part thatmust be kept inmindwhen thinking about the generalization of our
study is our sample of participants. Our participants were all university students andwere
mainly right‑handed. We analyzed EEG data from 15 male and 13 female participants,
excluding two left‑handed participants, which makes our data set not fully balanced in
gender. However, the difference is not significant. Therefore, we assume that any possible
bias introduced by imbalanced genders would be negligible. Taken together, our results
are limited to our participants and might not be representative of the whole population.
Additional studies need to be conducted to clarifywhether our results differwith attributes
such as age, handedness, education, nationality, etc. Also, a bigger sample size would
increase the generalizability and increase the statistical power. However, our study gives
some insights into possible correlations. Those need to be tested on a larger scale in the
future to guarantee generalizability and also to see whether the trends observed in this
paper show statistical significance on a larger data set.

Such a large and extensive study could also lead to more insights into the causal rela‑
tionship between Asym and SWB. From our study, we can conclude that there is a relation‑
ship between these two variables but cannot say anything about their causal relationship.
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Short‑term SWB is, as indicated by the name, a very subjective measure. We tried
to explain to the participants as best as possible what to focus on; however, we cannot
exclude the fact that every participant slightly interprets SWB differently. The Likert scale
itself has also been criticized, see, e.g., [72]. However, it was the only measure available
to be performed on short time scales. Besides that, longer questionnaires are prone to
different biases.

In our experiment, we chose temperature and humidity as two environmental factors
to influence short‑term SWB. However, those are not the only environmental conditions
that are expected to influence SWB. Hence, also, different light settings, noise levels, or
even different smells might influence one’s SWB. Since our experimental time was limited,
we just chose those two variables, but that does not mean that temperature and humidity
are superior or more influential than other environmental settings.

5. Conclusions
In this work, we analyzed EEG asymmetries between different sensor locations or

brain areas as well as including less‑investigated frequency bands and their correlation to
short‑term changes in SWB. First, we can confirm that there is a positive linear correlation
between FAA and SWB. We also found that some asymmetries of frontal sensors correlate
to SWB when filtered into the delta band or theta band. For posterior regions, an opposite
direction of the asymmetry was observed, and the beta band showed, although not statis‑
tically significant, higher importance than for the frontal sensors. This makes us conclude
that a focus on FAA might exclude insights into brain function. Moreover, not filtering
into any frequency band also showed statistically significant results. This might be useful
when developing wearable systems that require results with little computational power
and in very short times.
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