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Abstract

In recent years, smart manufacturing (SM) has gained significant attention in the
manufacturing industry due to its potential to address labor shortages and optimize energy
resources. One of the key elements of SM is the Collaborative Robot, which enhances
operational efficiency and production speed by enabling human-robot collaboration. Since
Collaborative Robots are designed to share workspaces with humans for efficiency, ensuring
human safety is a critical challenge.

Current Automatic Guided Vehicles (AGVs) and Autonomous Mobile Robots (AMRs)
are equipped with increasingly precise sensors, such as RGB cameras and LiDAR (Light
Detection and Ranging), allowing them to acquire diverse environmental information.
Given the limitations of individual sensors, research on multimodal object recognition,
which integrates multiple sensors to enhance recognition accuracy, is being hot topic.
While multimodal sensing has been widely applied in real-world robotic systems, existing
approaches have not fully addressed the time-dependent variation in sensor reliability
caused by environmental factors such as lighting conditions and moving obstacles. This
limitation may lead to inaccurate perception of the surroundings in dynamic environments.

To address this issue, in this thesis we propose a multimodal object recognition method
inspired by human perception, which dynamically adjusts the weighting of sensor inputs
based on real-time environmental changes. The method employs MLE model-based re-
liability weighting approach, allowing the system to adaptively adjust sensor confidence
scores over time. To evaluate how dynamic assessment of sensor reliability affects recog-

nition, we conducted experiments where one modality was given while varying the other.



Specifically, we prepared recognition task results using real-world video data and com-
bined them with simulated modality data, whose mean and variance changed over time,
to comprehensively verify the effectiveness of the proposed method in suppressing false
positives.

The evaluation results demonstrate that by incorporating dynamic sensor reliability
assessment, our proposed approach significantly improved recognition performance com-
pared to conventional methods, such as arithmetic averaging and maximum value selection.
Notably, the method reduced fluctuations in unreliable scores and achieved a more stable
score transition, leading to an improvement in precision and specificity over the baseline
approach. In particularly, in one situation set up in this study, precision improved from
0.00 to 1 for the average method, and specificity improved from 0.89 to 1 for max selecting
method. These findings suggest that dynamically adjusting sensor reliability can enhance

recognition robustness in real-world robotic applications.
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1 Introduction

The advent of technology, digitalization is progressing across various fields, including man-
ufacturing, where Smart Manufacturing (SM) has attracted attention as a means to ad-
dress labor shortages and optimize energy use [1-4]. SM incorporates multiple technolo-
gies, such as Cloud Computing and Augmented Reality, but one of the most actively
researched areas is Collaborative Robots. Collaborative Robots are designed to operate
in shared workspaces with humans, allowing for simultaneous collaboration. Unlike tra-
ditional industrial robots, which are confined to separate work areas for safety reasons,
Collaborative Robots eliminate the need for protective barriers, making more efficient use
of workspace.

Robots used in manufacturing environments are categorized based on their level of
autonomy. Automatic Guided Vehicles (AGVs) operate along predefined routes, while
Autonomous Mobile Robots (AMRs) navigate freely without fixed pathways. AMRs are
typically equipped with multiple sensors, such as cameras, LIDAR (Light Detection and
Ranging), and radar, enabling them to estimate their position, detect humans, and navi-
gate their environment (Fig. 1).

By leveraging AMRs, manufacturers can offload repetitive and physically demanding
tasks to robots while allowing human workers to focus on more expert or complex oper-
ations that are costly to automate. For example, in small-batch production, automating
every step of the process is economically unfeasible, however, using AMRs to transport
materials within a factory can significantly improve efficiency. Unlike traditional AGVs,
which require extensive infrastructure modifications, AMRs can adapt to changes in fac-
tory layouts, making them a more flexible solution for automation.

Despite these advantages, ensuring human safety remains a critical requirement for
AMRs. Since these robots operate in environments where humans frequently move, ac-
cidental collisions must be prevented. AMRs are also high-mass systems, often carrying
power units and cargo, which makes collisions particularly hazardous. To enable safe and
efficient operation, AMRs must incorporate robust environmental perception capabilities,
allowing them to identify objects and humans using Computer Vision (CV) technolo-

gies [1-5].
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Figure 1: Collaborative Robots example. Collaborative Robots have multiple sensors,
such as cameras, LiDAR, and radar to recognize their surroundings. They share workspace
with human workers, making more efficient use of workspace. For human safety, they need

to implement safety measures and stop all motion to prevent any potential injury.

To recognize their surroundings, AMRs integrate a variety of sensors that provide
information for obstacle detection, path planning, and task execution [6-8]. Each sensor

has its own strengths and limitations. For example:

e Cameras capture detailed visual information but may be affected by lighting condi-

tions.

e LiDAR provides high-precision distance measurements but struggles on surfaces with

low reflectivity.
e Radar measures object velocity but lack detailed spatial resolution.

In indoor environments such as factories and warehouses, lighting conditions vary, causing
the appearance of objects to change. Similarly, some materials may not reflect light well,
making LiDAR-based detection unreliable. Each unimodal sensor suffers from information
loss, e.g., cameras lack depth information, while LIDAR and radar lack color and texture
data [9-11]. To address these limitations, multimodal object recognition has been studied
as a way to combine multiple sensors and compensate for missing information [8-12]. A
common approach is to integrate data from cameras and LiDAR to combine visual and

depth information for improved recognition performance.



Multimodal Object Recognition methods have been explored by many work, and they

are classified into two main approaches based on the timing of integration. [8-12]:

e Early Fusion (Feature-Level Fusion): Integrates sensor data at the feature
extraction stage, converting them into a common format for joint processing. This

approach preserves sensor information but is highly sensitive to sensor failures.

e Late Fusion (Decision-Level Fusion): Processes sensor data separately and
then combines the final outputs. This approach is more robust to sensor failures but

may lose cross-modal relationships.

While these methods focus on when sensor data should be combined, they do not consider
how sensor reliability changes over time. In real-world applications, the importance of
each sensor fluctuates due to environmental changes. For example, in human detection

tasks, sensor reliability shifts as:

e Distant objects are better detected by LiDAR, but cameras and radar become more

reliable at closer distances.

e Changing lighting conditions degrade camera reliability, while low-reflectivity sur-

faces weaken LiDAR performance.

Despite these known challenges, existing approaches do not dynamically adjust sensor
weighting based on changing reliability. Some studies have explored climate effects on
sensing [8] and illumination effects on recognition accuracy [13], but few have incorpo-
rated real-time sensor reliability estimation into their methods. To improve environmental
perception, it is essential to develop a method that can adapt to time-dependent sensor
reliability changes.

To address this issue, we focus on human perception models, as humans make decisions
based on uncertain and noisy sensory inputs [14-16]. Human recognition processes have
been studied from multiple perspectives, including neurophysiology and psychophysics.
Among these, psychophysical approaches suggest that humans integrate sensory inputs
by weighting them based on modality-specific reliability, a concept that has been applied

in our prior work on object recognition [17,18]. In this prior research, we incorporated



predefined reliability values for different sensor inputs, using these reliability estimates
to enhance object recognition. However, this approach did not account for real-time
fluctuations in sensor reliability, as the reliability values remained constant throughout
the evaluation process. As a result, it was unable to adapt to changes in reliability over
time.

In this work, we propose a sensor integration method that dynamically evaluates the re-
liability of modality-specific prediction scores over time. Unlike prior approaches that used
fixed reliability values, our method continuously updates the weighting of each modality
in response to environmental variations. The proposed method is based on a MLE model
framework [19,20], which allows for adaptive integration of multimodal sensor data while
considering time-dependent reliability changes. To evaluate the effectiveness of this ap-
proach, we conducted experiments where the recognition result of one modality was fixed
while that of the other was varied, allowing us to observe how the integration process
adapted to different conditions. For the fixed modality, we used real-world video-based
recognition results and combined them with a simulated modality whose mean and variance
changed over time. We then compared the proposed method to conventional approaches,
such as arithmetic averaging and maximum value selection, to assess its impact on recogni-
tion performance and error reduction. The results demonstrate that our proposed method
reduces the influence of unstable scores and achieves more consistent recognition perfor-
mance, even in environments with high uncertainty.

The key contributions of our work are as follows:

e Proposal of a reliability-weighted multimodal object recognition method that adjusts

sensor weights based on time-dependent reliability changes.

e Experimental validation of dynamic sensor reliability assessment using real-world
video-based recognition results combined with simulated modality scores that change

over time.

e Demonstration of improved recognition stability, showing that the proposed method
reduces the impact of unstable sensor scores compared to arithmetic averaging and

maximum value selection methods.
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The remaining of the thesis is organized as follows. Section 2 introduces our previous
research and related studies. Our proposed methodology is described in Section 3, and
we verify its effectiveness using our prepared results of processed real-world video data
combined with a generated modality data in Section 4 . Section 5 concludes with a brief

summary.
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2 Human Perception-Inspired Multimodal Object Recogni-
tion

Multimodal object recognition has been extensively studied to improve perception in real-
world environments. Many approaches integrate RGB images and point cloud data, aim-
ing to compensate for the limitations of individual modalities. However, most existing
methods assume that sensor reliability remains constant over time, failing to account for
environmental variations such as changes in lighting conditions or object occlusions. To
address these issues, our study explores an adaptive multimodal recognition framework
inspired by human perception, dynamically adjusting sensor contributions based on real-
time changes in reliability.

This section first outlines conventional object recognition methods (Section 2.1), dis-
cussing both unimodal and multimodal approaches. Then, we examine prior research
that incorporates human perceptual models into multimodal recognition (Section 2.2) and

highlight the key distinctions between existing methods and our proposed framework.

2.1 Object Recognition
2.1.1 Unimodal Object Recognition

Unimodal object recognition relies on a single type of sensor input, typically RGB images
or point cloud data [8-12,21,22]. In RGB-based recognition, deep learning techniques such
as YOLO Series [23-25] and DETR [26] are widely used, leveraging large-scale datasets
like COCO [27] to detect objects in complex scenes. RGB images provide rich texture and
color information, making them effective for identifying object categories, but they lack
depth and spatial structure.

In contrast, point cloud-based recognition processes data from sensors like LIDAR and
Radar, which capture 3D spatial information essential for estimating object position and
shape. Deep learning models such as PointNet [28] and PointPillars [29] are commonly
used in this domain. Datasets like KITTI [30] and nuScenes [31] offer benchmark evalua-
tions for point cloud-based recognition. While point cloud data provides precise distance

measurements, it lacks color and texture, making it difficult to distinguish objects with
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similar shapes but different appearances.

2.1.2 Multimodal Object Recognition

To overcome the limitations of unimodal approaches, multimodal object recognition in-
tegrates multiple sensor inputs, combining their strengths to enhance perception [8-12].

These methods are broadly categorized into two main types:

e Early Fusion: Sensor data is combined at the feature extraction stage, converting
all inputs into a common representation before recognition. For example, Frustum
PointNet [32] projects RGB-based bounding boxes onto point clouds for 3D object
localization, while PointPainting [33] uses semantic segmentation from RGB images

to enrich point cloud data.

e Late Fusion: Each sensor’s data is processed separately, and the recognition results
are combined at a later stage. Methods like MV3D [13] convert point clouds into
a bird’s-eye view before fusion, while CLOCs [34] aligns bounding boxes detected

from different modalities based on their spatial overlap.

Despite the progress in multimodal fusion, existing approaches typically assign fixed
weights to each sensor, assuming that all modalities contribute equally throughout the
recognition process. However, in real-world environments, sensor reliability fluctuates over
time, for instance, distant objects are better detected by LiDAR, but RGB images and
radar become more reliable as objects move closer. Moreover, lighting conditions signifi-
cantly affect RGB-based recognition, while low-reflectivity surfaces degrade Point Cloud-
based recognition. These variations highlight the need for a dynamic sensor weighting

mechanism that adapts to environmental changes.

2.2 Multimodal Integration in Human Perception

Since sensor inputs contain noise and uncertainty, researchers have explored how human
perception integrates multimodal sensory information [14-16]. Humans do not rely on a
single sense but instead adjust sensory reliance dynamically, prioritizing the most reliable
source based on context. This concept has been formalized using Bayesian Causal Infer-

ence (BCI) [19,20,35-38], which models how humans determine whether sensory signals

13



originate from a common or independent source. We have been applied this concept in

our prior work on object recognition [17,18].

2.2.1 Generative Model

BCI models sensory integration using causal structures (C) that define the relationship
between sensory observations and their sources. Given two sensory inputs (e.g., RGB
images and LiDAR data), the model estimates whether they originate from the same
source (C' = 1) or different sources (C' = 2). The prior probability of C' = 1, denoted as

Deommon, represents the likelihood that the two modalities should be integrated.

2.2.2 Causal Inference
Using Bayes’ theorem, the probability of the causal structure given the observed data is
computed as Eq. ((1)):

p(l’a, l’y‘c)pcommon (1)
p(xaa m’U)

p(C‘l’a,xU) =

where x, and z, are the observations from different modalities. Based on this, the inte-

grated estimation is performed as:
zo = P(C =1)tq0=1+ P(C =2)Tqc=2 (2)

where £, c—1 and &, c—2 represent the estimated values depending on the causal condition

C.

2.2.3 Estimation

Because both prior distributions and likelihoods are assumed to be Gaussian, the posterior

distribution remains Gaussian, leading to the following estimation equations:

; . _ xa/ag—kxv/a%—kup/ag 3)
a,e=1 ve=l 1/02+1/02 + 1/012,

s _Ta/9% t /oy (4)
“=2 T /o2 4 1/o2

where j1,, 0}, represent the prior mean and variance of the observed data, and o,, 0, indicate

the observation noise of each modality.
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2.2.4 Human Perception-inspired multimodal integration model

By incorporating Bayesian inference, existing research has shown that dynamically ad-
justing sensory reliance improves object recognition robustness [17,18]. However, previous
studies used fixed reliability values, meaning they did not account for real-time fluctua-
tions. This limitation makes them less adaptable to changing environments. To address
this, in this thesis we propose an adaptive multimodal recognition framework that contin-
uously evaluates sensor reliability over time. Unlike prior work, our method dynamically
adjusts modality weighting based on environmental conditions, enabling more reliable

recognition in uncertain and dynamic settings.
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3 Proposal of Reliability-Weighted Multimodal Object Recog-
nition

This section details the proposed reliability-weighted multimodal object recognition method,
which dynamically adjusts the weight of each sensor based on real-time changes in reliabil-
ity. Unlike conventional fusion methods that apply fixed sensor weighting, our approach
continuously re-evaluates sensor confidence using historical detection performance over a
time window.

Section 3.1 provides an overview of the proposed framework, Section 3.2 discusses the
reliability-weighted multimodal integration approach, and Section 3.3 describes how the

computed scores are used for decision-making.

3.1 Overview

The proposed method takes inputs from two modalities, processes detection results from
each, and integrates them to produce a confidence-weighted recognition score. Unlike
conventional multimodal fusion, which treats all sensors as equally reliable, our method
monitors temporal fluctuations in sensor performance and adjusts their contributions ac-
cordingly. Figure 2 illustrates an overview of the proposed method. The key steps are as

follows:

e Input Processing: Object recognition is performed independently for each modal-
ity.

e Temporal Reliability Estimation: The system tracks the stability of each

modality’s detection score over a defined time window.

¢ Reliability-Weighted Fusion: Sensor scores are dynamically weighted based on

their estimated reliability.

e Final Decision: A threshold-based approach determines whether an object is

detected.

16
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Figure 2: Overview of the proposal object recognition. The final decision is made
using the resulting integration score and a set threshold value, which is weighted according

to the reliability of the candidate detections from the two modalities.

3.2 Reliability-weighted Multimodal Integration
3.2.1 Dynamic Reliability Estimation

To account for time-dependent variations in sensor reliability, we introduce a MLE Model-
based approach [19,20]. This model continuously evaluates the stability of each sensor’s
detection score over recent frames, adjusting its contribution accordingly. For example, in
environments the point cloud data of small objects become sparse, its reliability decreases,
and RGB images degrade due to lighting changes, their reliability decreases. Rather than
relying solely on the instantaneous detection score from each modality, we incorporate

historical performance trends to ensure more stable recognition. Specifically, we define
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mean (p(y) and variance (0'(2T)) at time T over a time window W as follows:

1 w
) = > @y, (5)
=1
1 & 2
oty = 57— 2 [#r—i — )] +e (6)
i=1

where x(p_;) represents the detection score of a given modality at frame 7" — 4. W is
the window size and e is a small constant ensuring numerical stability (e << 1). A high
variance (O'(QT)) indicates inconsistent detection scores, suggesting that the modality is
unreliable. Thus, when performing multimodal fusion, sensors with lower variance are

assigned higher weights.

3.2.2 Reliability-Weighted Score Integration
To compute the final integrated recognition score, we assign weights based on each sensor’s
inverse variance:

pary/ 0-124(T) + pv(r)/o 3@) + Hp(r)/ Uz%(T)

Iy—r) = (7)

where A and V refer to Modality A (e.g., RGB images) and Modality V (e.g., Point Cloud).
pa(r)y and py 7y are the mean of recent detection scores, and 0'124(T) and 0"2/(T) are the
variance of them. p,r) and 0,7y denotes prior knowledge of reliability, which is updated
each time the score is calculated for each W/ This allows us to retain the information
measured at the previous time. If a modality lacks detection results at a given frame (e.g.,
missing data from RGB-based method due to blackout), integration is performed using
only available inputs:

tar)/o ,QA(T) + tip(ry/ Uﬁ(T)
1/021(T) + 1/‘7;2;(T)

Ty—r) = . if Modality V' score is missing (8)

v (ry/o \2/(T) + tip(ry/ U;(T)
/oy + /oy

Ty—r) = . if Modality A score is missing 9)

If both modalities are unavailable, only prior knowledge is used for estimation.

18



3.2.3 Updating Prior Distributions

To ensure adaptability to changing environmental conditions, the prior distribution is

updated dynamically:

Ppt=T+1) = Lu=T) (10)
1 1 1
Uz(t:T+1) =(—+3 + ) ! (11)

am vy ()
By iteratively refining prior knowledge, the model gradually adapts to shifting sensor

reliability trends.

3.3 Decision Making
3.3.1 Risk Assessment Using Integrated Scores

After computing the reliability-weighted score I(7y, the final decision is made based on a

predefined threshold 6.

1, if Iy >0,
R(T) = @ (12)

0, otherwise.
The threshold 0 is empirically determined based on experimental results, ensuring a bal-
ance between false positives and false negatives. By employing 6, the proposed method
provides flexible response, such as lowering the threshold to increase safety or raising the
threshold to avoid unnecessary detection.

3.3.2 Advantages of the Proposed Method

Unlike conventional multimodal fusion approaches that assign static sensor weights, our

method provides several advantages:

e Adaptability to Dynamic Environments: Automatically adjusts to changes in

lighting, occlusions, and sensor noise.

e Reduction of Erratic Detections: Unstable modalities contribute less to the

final decision.
e Improved Recognition Robustness: Avoids over-reliance on a single sensor.

19



By incorporating historical reliability trends, our method ensures more consistent and

accurate recognition in uncertain environments.
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4 Evaluation

This section presents the experimental setup and evaluation results of the proposed reliability-
weighted multimodal object recognition method. The objective is to assess how dynam-
ically adjusting sensor reliability influences recognition performance under varying envi-
ronmental conditions.

Section 4.1 describes the experimental setup, including the dataset, task definitions,
evaluation metrics, and parameter settings. Section 4.2 presents quantitative and quali-
tative results, followed by a discussion in Section 4.3, and the contribution of this work in

Section 4.4.

4.1 Setting
4.1.1 Dataset

To evaluate the proposed method, we conducted experiments using a combination of real-
world video data and simulated modality data. The real-world data consists of RGB-
based recognition results shown in Fig. 3, obtained using a unimodal object recognition
method (StreamYOLO [25]). The dataset contains 560 frames collected in an indoor
environment, where a person walks down a hallway (Fig. 4). In addition to real data,
we generated a simulated modality to model the effects of environmental variations over
time. This synthetic data was designed such that its mean detection confidence (us) and
variance(c2) change across different time segments, simulating conditions where sensor
reliability fluctuates. These values were determined based on an analysis of the RGB-
based recognition trends, ensuring that the simulated scores exhibit realistic behavior

(Table. 1).

4.1.2 Task Setting

To evaluate the effectiveness of the proposed reliability-weighted fusion method, we de-
signed a task in which recognition scores from two modalities (RGB-based and simulated)
are integrated, with the simulated modality exhibiting time-dependent reliability varia-

tions. The simulated modality undergoes four distinct phases (Phase 1, Phase 2, Phase 3,

21
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Figure 3: Result of RGB-based unimodal object recognition. Recognition results
of the RGB-based recognition system prepared with the actual environmental data. The
first half of the video was undetectable, and the score became unstable in the middle of

the frames, while the second half of the video was stable and recorded a high score.

Phase 4), each characterized by different values for mean (p5) and variance (02). These

values are controlled using three predefined levels:

e h (high): For mean (uy), this represents high confidence in detection. For variance

(02), this represents unstable confidence (i.e., high fluctuation)

e m (medium): For mean (u,,), this represents moderate confidence. For variance

(02,) , this represents moderate fluctuation.

e 1 (low): For mean (1), this represents low detection confidence. For variance (o?),

this represents stable confidence (i.e., low fluctuation)

In the experiment, modalities changes their reliability as follows:

22
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Figure 4: Test scene description. The person coming down the hallway towards the

front of the camera.
e Simulated Modality: The simulated modality moves through different reliability
states over time.

e RGB Modality: The RGB-based recognition scores become more stable after

frame 300, reflecting improved tracking accuracy.

This experimental design evaluates whether the proposed method can dynamically adjust
sensor weighting based on real-time reliability assessment.
In this experiment, the performance of the method is evaluated using whether the

output data satisfy the following conditions with respect to a set threshold 6.

e Conditions in which a score above a set threshold 6 should be output (I(1y > 0):

— only when at least one modality is reliably detecting an object.

— Example: If the RGB modality is stable and exhibits high confidence, the

integrated score should follow it closely and exceed 6.

e Conditions in which a score below a set threshold 6 should be output (I(1y < 0):

23



— if neither modality provides a reliable detection.

— Example: If both RGB and the simulated modality exhibit low confidence and

high variance, the integrated score should not be falsely elevated.

By assessing whether the integrated score aligns with sensor reliability trends, this ex-
periment evaluates the effectiveness of the proposed dynamic sensor fusion method. For
example, the simulated modality parameters set as (p = 1, us = llhh , o5 = hhll), the
integrated score should remain below 6 at Phase 1 because of the unstable detection period
(05 = h) and it should exceed 6 at Phase 3 because of the stable period and high-confidence
(s = h,0s = 1). By setting these conditions, the experiment evaluates whether the pro-
posed fusion method can effectively differentiate between reliable and unreliable sensor

inputs.

4.1.3 Metrics

To assess performance quantitatively, we use the confusion matrix-based evaluation:

e True Positive (TP): The integrated score correctly surpasses the threshold when a
reliable modality’s score is also above the threshold. (i.e., when at least one modality

with low variance and high confidence exceeds 6, the integrated score does to0o.)

e False Negative (FN): The integrated score incorrectly remains below the threshold
when a reliable modality’s score is above the threshold. (i.e., a high-confidence, low-

variance modality detects an object, but the integrated score fails to follow it.)

e False Positive (FP): The integrated score incorrectly surpasses the threshold when
no reliable modality’s score is above the threshold. (i.e., neither modality is reliable,

but the integrated score falsely detects an object.)

e True Negative (TN): The integrated score correctly remains below the threshold
when no reliable modality’s score exceeds the threshold (i.e., both modalities indicate

low confidence, and the integrated score appropriately does not detect an object)

Using these, we compute the following performance metrics:
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Table 1: Parameters

Parameter Value
Total Frames (V) 560
Detection Threshold () 0.65, 0.75 ,0.85
Time Window (W) 5,10
Prior Distribution (1, 0p) 0.5, 0.05
Simulated Modality Pattern (p) 1,2

p =1, (0.15, 0.75, 0.90)
2, (0.25, 0.50, 0.80)
(0.015, 0.030, 0.13)
(0.030, 0.050, 0.15)

Simulated Modality Average Score (py, fim.-fin)

p

L,
Simulated Modality Standard Deviation (o7, 0y,.0%) P
p=2,

Accuracy (ACC): Measures the overall correctness of object classification.

TP+TN

A = . 1
Y = TP TN + FP+ FN (13)
e Precision (Prec): Evaluates how many positive predictions are actually correct.
TP
PreCiSiOH = m (14)
e Recall (Rec): Assesses how many actual positives were correctly detected.
TP
Recall = —————. 15
T TP+ FEN (15)
e Specificity(Spec): Measures the method’s ability to avoid false positives.
TN
ificity = —————. 1
Specificity TN + FP (16)

These metrics allow us to evaluate the proposed method’s ability to maintain high perfor-

mance while reducing false positives and false negatives.

4.1.4 Parameter Settings

Table 1 lists the experimental parameters used in the evaluation. To assess the sensitiv-
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ity of the proposed reliability-weighted fusion method under varying conditions, multiple
detection thresholds (#) and simulated modality patterns (p) were tested. The detection
threshold () was evaluated at three different values: 0.65, 0.75, and 0.85 allowing us to
analyze how the trade-off between detection sensitivity and specificity affects performance.
The simulated modality follows two distinct patterns (p =1, p = 2), designed to resemble

different sensor characteristics:

e p = 1: Simulates a modality similar to RGB-based recognition with higher confi-

dence for high-reliability conditions.

e p =2: Represents a modality similar to Point Cloud-based recognition, with more

balanced confidence levels across different reliability states

For each simulated modality pattern, the mean detection confidence (g, fm, ) and

standard deviation (o, o.,, op) are predefined.

4.2 Experimental Results

This section presents the evaluation results of the proposed reliability-weighted multimodal
object recognition method. The experiments examine how dynamically adjusting sensor

reliability influences detection performance under varying conditions.

e Averaging Method: Computes the mean of detection scores from both modal-
ities. This method is less affected by outliers but is influenced by modalities with
low reliability. By comparing this method, we can evaluate the difference between

integration approaches that incorporate dynamic reliability and those that do not.

e Max Selection Method: Selects the highest score from either modality. It is
effective in scenarios where certain sensors function strongly but carries the risk of
over-relying on unstable sensors. By comparing it with other approaches, we can

assess its robustness against environmental changes.

Each method was tested under different reliability conditions for simulated modality that
were characterized by variations in mean detection confidence (us) and detection score
variance (02). The analysis focuses on four key metrics as we mentioned above: accu-

s

racy (ACC), precision (Prec), recall (Rec). and specificity (Spec).
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4.2.1 Quantitative Results

Table 2 summarizes the performance comparison between the proposed method and the
baseline approaches. The results show that the proposed method consistently achieves
higher precision and specificity, particularly in high-variance conditions (o5 = h), where
sensor reliability fluctuates. In stable conditions (o5 = [), all three methods achieve similar
accuracy, indicating that when sensor reliability is high, fusion complexity is minimal.
However, in high-variance scenarios, the proposed method consistently outperforms the
baselines, achieving higher specificity while reducing false positive. For instance, in the
(p = 1,us = llll,oc5 = hhhh) condition at § = 0.75, the proposed method achieves
Spec = 1.00, while the averaging method only reaches Spec = 1.00, but with significantly
lower accuracy, confirming that it avoids being influenced by unreliable sensor inputs.
The effect of threshold variations is also evident. Comparing (p = 2, us = Ilmhh, hmll)
at 0 = 0.75 and 6 = 0.85 shows that increasing the threshold improves precision (remains
at 1.00) but reduces recall (0.85 — 0.73). This confirms that raising 6 filters out uncertain
detections, making recognition more selective at the cost of missing some objects. Con-
versely, in (p = 2, us = llmm, o5 = mmmm) at § = 0.65 and 6 = 0.75, lowering the thresh-
old improves recall (0.81 — 0.85) without significantly specificity (remains at 1.00). This
suggests that in moderate-reliability conditions, reducing @ increases detection rates with-
out increasing false positive. Another comparison between (p = 1, us = mhhh,os = mlll)
and (p = 1, us = mhhh,os = mmmm) at 6 = 0.75 highlights the role of variance. When
variance increases from low to medium, recall drops slightly (0.94 — 0.80) while speci-
ficity increases (0.82 — 0.95). This confirms that higher variance reduces overall detection
rates but ensures that recognized objects are more reliable, improving confidence filtering.
These findings demonstrate that the proposed method effectively adapts to varying sen-
sor reliability, maintaining robust detection performance while minimizing the impact of

unreliable sensor inputs.

4.2.2 Qualitative Results

To further analyze the performance of the proposed method, we examine score transi-

tions over time under various conditions. Figures 5-7 provide a qualitative comparison
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between the proposed reliability-weighted fusion method and baseline approaches. The
figures illustrate how each method responds to fluctuating sensor reliability. The colors
represent different data sources: Blue lines represent simulated modality, orange lines rep-
resent RGB-based video modality, green lines represent averaging method, dotted red lines
represent max selection method, and red lines represent proposed method.

Firstly, we tested the effectiveness of the method by fixing the values of 6, u,, and
op (Fig. 5). The proposed method maintains smoother score transitions than both the
averaging and max selection methods. Specifically, in Fig. 5a, the max selection method
exhibits sudden spikes, whereas the proposed method stabilizes detection. It suggests that
the proposed method filters out noisy detections and maintains robust integration.

Secondly, in the case of Pattern 2, we checked how the transition would change if the
mean and standard deviation of the hypothetical were changed. In Fig. 6a, max selection
frequently exceeds the threshold due to unreliable peaks, while the proposed method
remains stable. In contrast, the proposed fusion approach effectively prevents unreliable
detections by prioritizing stable modality inputs.

Thirdly, we compared the cases with fixed patterns and varying thresholds. In Fig. 7,
increasing the threshold reduces false positives but may also miss some valid detections.
A moderate threshold (f = 0.75) balances precision and recall, while lower thresholds
increase sensitivity and higher threshold improve recall.

Finally, we tested the effect of Time Window W. A longer W helps to filter out short-
term noise, stabilizing detection decisions. A shorter W enables quicker adaptation, which
can be beneficial when sensor reliability changes rapidly but may also introduce higher

sensitivity to noise.

4.3 Discussion

The experimental results show that the proposed reliability-weighted fusion method ef-
fectively reduces false positives (FP) while maintaining stable detection performance. In
particular, the results confirm that the method prevents unreliable high-variance scores
from disproportionately influencing the final integrated detection score.

While the results demonstrate the effectiveness of the proposed method, the current

evaluation setup has several limitations that should be addressed in future research.
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Figure 5: Score plots of pattern (p =1, § = 7.5, pu, = 0.5, 0, = 0.05, W =5). This
figure presents the score transitions over time for Pattern 1 with detection threshold § =
0.75 and prior distribution (u, = 0.5, 0, = 0.05). p,s and o, are simulated modality’s mean
and standard deviation as mentioned at Section 4.1.2. (a, b) Even when the simulated
modality’s mean score is high, the proposed method avoids being influenced when variance
is large (highlighted yellow regions). (¢, d) When the simulated modality increases earlier
than the video modality, similar behavior is observed. (e) If the simulated modality score
increases later, a different adaptation trend is seen. (f) When the simulated modality
score remains consistently low and fluctuates, the proposed method successfully avoids

using unreliable sensor inputs, indicating that this sensor is unsuitable for the task.
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Figure 6: Score plots of pattern (p = 2, § = 7.5,
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, = 0.5, 0, = 0.05, W = 5).

Score transition plot for Pattern 2 under the same conditions as Figure 6 (0 = 0.75,

pp = 0.5, o, = 0.05). (a, b) Compared to Pattern 1, the effect of high variance on

reliability assessment is reduced, and the proposed method follows stable detections more

accurately. (c, d) In early rising simulated modality scores, the proposed method again

follows the stable modality rather than the fluctuating unreliable one.
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Figure 7: Score plots with varying thresholds (6 = 0.65, 0.75, 0.85). This figure
compares the effect of different detection thresholds () on score transitions, demonstrating
how varying the threshold influences detection behavior. (a, ¢) At a moderate threshold
threshold (# = 0.85), recall improves, but some unreliable detections persist. (b) At a
low threshold (6 = 0.65), the balance between precision and recall is maintained, reducing
false positives while still detecting. (d) At a high threshold (f = 0.85), precision improves

significantly, but some valid detections are missed.
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Figure 8: Score plots with varying time window (W =5, W = 10) . The figure
illustrates how varying the time window affects detection stability and responsiveness:
(a, b) When the simulated modality’s score rises earlier, the proposed method adapts
efficiently, preventing abrupt changes despite variance fluctuations. A longer time window
results in smoother score transitions, while a shorter window allows faster adjustments
but increases fluctuations. (c, d) When the simulated modality’s score increases later,
the proposed method maintains robustness without being overly affected by early low-
confidence scores. A shorter time window reacts more quickly, while a longer time window

prevents unnecessary oscillations.
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The current method assumes that the recognition results provided from multiple
modalities correspond to the same object. In real-world applications, object recogni-
tion errors or misalignment between modalities could introduce inconsistencies in fusion.
Future work should explore robust matching techniques to ensure that recognition results
are reliably associated across modalities.

The experiments were conducted using a simplified simulation environment, where
sensor reliability variations were modeled in a controlled manner. While this allows for
a systematic analysis of reliability-based fusion, real-world sensor data may exhibit more
complex variations, such as occlusions, dynamic environmental changes, or noise patterns
that differ from the simulated conditions. Future work should include real-world experi-

ments to validate the effectiveness of the proposed approach in practical scenarios.

4.4 Contribution of This Work

The proposed method enables multimodal recognition based on reliability, thereby allowing
for flexible decision-making in robot control. This section discusses the contributions of
the proposed approach through its application in real-world robotic systems.

Beyond controlling the movement of collaborative robots, this method is expected to be
applicable to systems requiring decision-making in complex environments. By evaluating
variations in scores obtained from multiple sensors in real time, robots can perform adap-
tive braking operations. For instance, if the integrated score is 0.3, the system considers
the possibility of an object’s presence and begins to decelerate. When the score exceeds
0.7, the robot recognizes a potential hazard and applies stronger braking. Decision-making
based on reliability helps reduce unnecessary sudden braking and incorrect avoidance ma-
neuvers, ultimately enhancing safety. Furthermore, by incorporating a mechanism that
allows the system to learn the energy required for restarting after braking and the addi-
tional effort involved in route adjustments, overall energy efficiency is expected to improve.

The findings of this study contribute not only to the advancement of autonomous
systems but also serve as a significant step toward achieving safer and more efficient robot

control.
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5 Conclusion

In this thesis, we proposed a reliability-weighted multimodal object recognition method
inspired by human perception. The method dynamically adjusts sensor contributions
based on time-dependent variations in reliability, addressing limitations in conventional
multimodal fusion approaches that assume constant sensor reliability.

The key contributions of this research can be summarized as follows:

e Proposal of a reliability-weighted multimodal integration method

— We introduced MLE model-based framework that dynamically adjusts sensor
reliability over time, preventing unreliable high-variance scores from dominat-

ing recognition decisions.

e Experimental validation with real-world video data and simulated modality inputs

— We conducted experiments using RGB-based recognition results combined with
a simulated modality, where mean confidence and variance varied over time to

simulate environmental changes.

e Improvement in recognition robustness and false positive suppression

— The proposed method significantly reduced false positives (FP) while main-

taining stable score transitions, as demonstrated in Sections 4.2.

— Compared to baseline methods (arithmetic averaging and max selection), the
method achieved higher precision and specificity, particularly under high-variance

conditions.

Moving forward, future research will focus on improving cross-modal feature matching,
validating the method in real-world environments, and expanding its applicability to multi-
object recognition. Furthermore, integrating this approach with more advanced perception
frameworks will be essential to enhance its robustness and practicality in complex, real-

world applications.
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