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Abstract—Beamforming technology using massive MIMO in
the millimeter wave (mmWave) band is attracting attention as a
fundamental technology for next-generation wireless communi-
cation systems. Beamforming increases the signal-to-noise ratio
(SNR) of signals received by terminals and enables high-speed
communications. In beamforming, it is necessary to search for a
beam with appropriate directivity from a predefined codebook
and irradiate the beam toward the terminal. Although hierarchi-
cal codebooks can be used to reduce the search overhead, con-
ventional beam training methods in hierarchical codebooks are
not suitable under conditions where channel conditions change
over time. This is because each time the beam is re-searched,
a non-optimal beam is applied, and the SNR is repeatedly
degraded temporarily and significantly. To solve this problem,
this paper proposes a method to predict the optimal beam using
active inference. This method avoids the problem of temporarily
degrading SNR by predicting the optimal beam without searching
for it. As a result, the method using active inference can increase
the average SNR compared to the conventional beam training
method in hierarchical codebooks.

I. INTRODUCTION

Beamforming technology using massive MIMO systems in
the millimeter wave (mmWave) band is attracting attention
as a fundamental technology for next-generation wireless
communication systems. The millimeter wave band is a high-
frequency band with broad communication bandwidth and
offers high communication capacity, but it is prone to radio
wave attenuation and has a problem of short communication
distance [1]. Therefore, it is necessary to use beamforming
to concentrate the signal to increase its strength and improve
the signal-to-noise ratio (SNR). Beamforming uses many array
antennas, from dozens to hundreds, in massive MIMO systems
to send radio waves strongly in a specific direction. To reduce
the computational cost of coordinating and controlling the
array antennas, a codebook is defined in advance.

Since beams in beamforming are directional, the optimal
beam has to be searched for among a large number of candi-
date beams defined in a codebook. To efficiently search for the
optimal beam, an algorithm has been proposed to narrow down
the candidate beams based on cues about the channel, such as
terminal azimuth, distance, and location information [2]. Even
if these cues are not available, a method called hierarchical
codebook has been proposed, which can search for beams

more efficiently than the Brute-force search. A hierarchical
codebook is a codebook that consists of pairs of beams with
different granularities, from coarse directional beams to fine
directional beams [3]. In a hierarchical codebook, the search
for the best beam using the divide-and-conquer method is
effective. This is because when once a beam with a coarse
directivity is adopted, it is sufficient to repeatedly search for
a fine-directivity beam that is directed in the same direction
as the coarse-directivity beam.

When channel conditions change over time (e.g., the az-
imuth of the mobile terminal as seen from the base station
changes over time), the optimal beam changes, and the op-
timal beam must be re-searched periodically. However, the
classical search algorithm (beam training) has the problem that
each time the beam is re-searched, the temporary significant
degradation of SNR when the non-optimal beam is applied,
is repeated. If the period of beam re-search could be set
appropriately according to changes in channel conditions,
the SNR degradation could be avoided as much as possible.
However, it is difficult to set the optimum period when changes
in channel conditions cannot be predicted in advance.

To solve the problem of repeatedly degrading SNR due to
such re-searching, it is necessary to predict the optimal beam
instead of searching for it. A method that combines Q learning
and deep learning has been proposed for predicting the optimal
beam [4]. However, in hierarchical codebooks, it is difficult for
this method to accurately infer the state of Q learning using
only throughput as a cue. This is because the change in the
throughput due to changes in channel conditions depends not
only on the fact that the azimuth of the terminal has changed,
but also on whether the directivity of the beam has changed.

To solve this Q-learning challenge and predict the opti-
mal beam, we have proposed a beamforming method using
active inference in a hierarchical codebook [5]. Active in-
ference can predict the optimal beam by inferring channel
conditions considering both throughput and the current beam.
In hierarchical codebooks, the code is determined for each
layer, so the subject (Agent) of active inference predicts the
optimal code at each layer. However, in previous research, the
internal state of the model oscillated in response to changes
in channel conditions, making stable learning impossible, and



beams could not be switched appropriately in response to
changes in channel conditions. In addition, the superiority
of the conventional model was not properly verified without
comparing the conditions using the omni-directional beam
with those using the conventional model.

Therefore, in this study, we propose a new model that
revises the design of the conventional model. In the proposed
model, the recurrence probability of the internal state when the
beam is not switched is taken to be large, and the oscillation
of the internal state is suppressed and stabilized. The stability
of the internal state of the model allows the model to learn to
adapt to changes in channel conditions. Additionally, unlike
the traditional model where the top layers monitor the lower
layers’ internal states to coordinate the active inference agents
in each layer of the hierarchical codebook [5], the proposed
model observes the codes of each other’s layers in the code-
book.

By comparing the SNR distributions of the proposed model,
the classical search algorithm, and the algorithm using only
omni-directional beams, we verified whether the proposed
model can switch beams more adaptively to various changes in
channel conditions than the other algorithms. As a result, the
proposed model maintained higher SNR averages than the al-
gorithms using only undirected beams and the classical search
algorithm, even when channel conditions change, without tem-
porarily degrading the SNR. Therefore, the proposed method
achieves high-speed and low-latency wireless communication
and contributes to the development of next-generation wireless
communication technology.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Beamforming

In beamforming using MIMO technology, a base station
with M antennas beams to a receiving terminal (UE: User
Equipment) with N antennas. The spatial characteristics be-
tween the base station antenna b and the UE antenna c are
represented by the (b, c) component of the channel matrix
H(t).

The base station creates a beam by adjusting the amplitude
and phase of the radio wave at each antenna. Using the beam
vector w(t) representing the phase, the amplitude Pw(t) and
the noise σ(t), the relationship between the transmitted signal
x(t) and the received signal y(t) can be described as follows:

y(t) =
√

Pw(t)H(t)w(t) ◦ x(t) + σ(t)e (1)

where ◦ denotes the element product and e is the unit vector.
The SNR can be expressed as follows:

γ(t) = Pw(t)|H(t)w(t)|2/σ2(t) (2)

The transmission rate to the UE can be estimated using SNR
as follows [6]:

Γ(t) = log(1 + γ(t)) (3)

Therefore, this study aims to maximize the transmission rate
by maximizing the SNR.

B. Hierarchical Codebook

In many cases, hierarchical codebooks are codebooks that
contain beams with different granularities from coarse to fine
directional beams. The uppermost layer contains the coarsest
beams, while the lower layers contain finer directional beams.
In general, the finer the beam, the higher the beam gain
and thus the better the SNR, but high SNR and broadband
directivity are incompatible.

There are Kl beam vectors in the l-th layer, and the k-
th beam vector is wl

k. In a bipartite hierarchical codebook,
Kl = 2l (l = 0, 1, · · · , L). According to the literature [3], the
K-th beam vector in the L-th layer can be written as follows:

wl
k = [a(2l,−1 + 2k − 1

2l
)⊤,0⊤

(KL−2l)×1]
⊤ (4)

a(n,Ω) =
1√
n
[eiπ0Ω, · · · , eiπ(n−1)Ω]⊤ (5)

In hierarchical codebooks, the divide-and-conquer beam
training method has been used. When a beam is adopted as
optimal one in the upper layer, we know that there is an UE
in the direction in which the beam has directivity. This allows
us to narrow down the candidates for fine directional beams.
By repeating this process, beams with higher gain and finer
granularity can be searched efficiently.

C. Observation of SNR at Base Stations

By using the Synchronization Signal (SS) and Channel State
Information (CSI) feedback from the UE to the base station,
the base station can measure the SNR and transmission rate of
the UE. Compared to the beam training and prediction period,
the delay due to beam switching and SNR feedback during
beamforming is sufficiently small that it can be ignored. For
example, in SS, the SNR is observed every 20ms because
SS/PBCH blocks are transmitted every 20ms [7]. On the
other hand, CSI measures SNR and other observations when
necessary, but the feedback delay is generally 10ms [8].
Beam switching is very fast, on the order of ns [9]. Thus,
in the experiments described in Chapter 4, the time required
to observe SNR and switch beams is much shorter than the
time required to find and predict beams and can be ignored.

D. Predicting channel condition changes

Predicting optimal beams under changing channel condi-
tions is a more difficult task than the task under unchanging
channel conditions. This is because a model is generally an
equation that extracts invariant properties of the environment.
Changes in channel conditions in beamforming tasks cannot
be assumed to be linear, such as periodicity, but are nonlinear,
accompanied by beam switching. Therefore, an algorithm with
the internal state as a latent variable can be used to deal with
nonlinear changes.

Reinforcement learning with the internal state as a latent
variable is called Q-learning, but Q-learning requires the
definition of a state transition diagram with internal states and
actions in advance. Some studies have defined state transition
diagrams using internal states and SNR to perform Q-learning



[4]. Both algorithms are insufficient in that they do not take
into account both the action and the SNR to infer the internal
state in beamforming tasks with channel condition changes.

Active Inference [10], [11] can be used to solve this
problem. In active inference, the internal state is inferred by
taking into account both the action and the SNR, and the next
optimal action is inferred. The goal of inference is to reduce
the error between the observed and predicted values. Here,
we consider the Partially Observed Markov Decision Process
(POMDP) as the model. When a prediction error exists under
this model, the inference of the internal state or action may
be incorrect. This is because the observed SNR depends on
the internal state of the UE’s orientation and the action of
irradiating the beam. The prediction error is formulated in
terms of free energy, and the internal state and action are
inferred to minimize the free energy.

III. PREDICTIVE BEAMFORMING WITH ACTIVE
INFERENCE

This chapter describes a method for predicting the optimal
beam using Active Inference. First, it is necessary to assign
an agent of Active Inference to each layer of the hierarchical
codebook. This is because each agent has the role of selecting
the code at each layer of the hierarchical codebook as an
action.

In this paper, we have a bipartite hierarchical codebook for
simplicity, but the number of partitions can be three or more.
Assuming a beamforming task for a single UE moving around
a single base station, the beam power Pw(t) may be considered
constant since there is no need to adjust the beam power to
avoid interference.

A. Inner State

Throughput is dependent on the beam vector and the ap-
proximate azimuth of the terminal, so channel conditions are
approximated by a discrete POMDP. Given the POMDP, active
inference can infer the next internal state and observed values
from the current internal state. However, since channel states
are not directly observable, first, it is necessary to infer current
channel states from the SNRs and beam vectors that can be
observed.

In the process of inferring the internal state in Active
Inference, the state that minimizes the variational free energy
is used as an estimated value. Therefore, the variational free
energy F (π) and the probability distribution of the plausible
states Q∗(s|π) when the action π is performed can be ex-
pressed as follows [10], [11]:

F (π) = EQ(s̃|π)[lnQ(s̃|π)− lnP (s̃, õ|π)] (6)
Q∗(s̃|π) = argmin

Q
F (π) (7)

The P is the probability distribution of the environment to
be modeled, and s, o are the internal state and observed
values, respectively. The tilde means that the values are
time-series values, but for simplicity, we assume that the
tilde is omitted. Naturally, the model know neither P (s, o|π)

nor P (s|o, π), so it is computed using the approximation
P (s, o|π) ≈ P (o|s)Q(s|π). This likelihood P (o|s) is one of
the trainable parameters of the model. The use of P (o|s) to
infer P (s|o) is typical of Bayesian inference.

Furthermore, it is necessary to determine the period at which
agents in each layer infer the internal state. Unlike classical
search algorithms in hierarchical codebooks, it is not necessary
to determine the codes in order from the upper layer to the
lower layer. Therefore, we expect the model to be stable by
taking the inference period of the upper layers longer than
that of the lower layers. This is because the lower layers are
expected to frequently switch between fine directional beams
and frequently change internal states, and the lower layers need
to infer with shorter periods.

B. Action

Unlike the variational free energy, the expected free energy
takes into account internal states of the time series up to
the next time and can predict the next optimal action. In
the process of inferring an action in Active Inference, the
action that minimizes the expected free energy is taken as
the estimated value. The expected free energy G(π) and the
probability distribution of plausible actions Q∗(π) when an
action π is performed can be approximately expressed as
follows [10], [11]:

G(π) = EQ(s̃,õ|π)[lnQ(s̃|π)− lnQ(s̃|õ, π)P (õ|C)] (8)
Q∗(π) = argmin

Q
(−G(π)− F (π) + lnP (π0)) (9)

where C is the parameter that determines the preference
distribution and π0 is the prior belief of the action. The
designer of the model can a priori determine the shape of the
probability distributions of P (õ|C) and P (π0). The inference
period of actions is set to the inference period of the internal
states, and it is assumed that the model always infers a
plausible action in a plausible state.

In the proposed method, the action π is the code at each
level of the hierarchical codebook, π ∈ {0, 1, 2, 3}. When π =
0 in the l-layer, the beam vector is determined by the higher
layer, the (l−1)-layer, instead of the l-layer. Therefore, when
π = 1, 2 from layer 0 (the top layer) to layer l, the k-th beam
vector wl

k of layer l is adopted according to the Eq. (4). k is
given by the following Eq. (10). However, let πl be the code
in the l-th layer.

k = 1 +

l∑
j=1

2l−j(πj − 1) (10)

When π = 3, the same code as the one adopted at one previous
time is adopted. By introducing this code, it becomes easier
to distinguish whether the SNR has changed due to a change
in the beam vector or due to a change in the azimuth of
the UE as seen from the base station. Active inference then
infers the internal state more accurately, solving the problem of
oscillating internal states in previous work [5]. Furthermore,
as discussed below, when the internal state is stable, stable
learning is expected to proceed.



C. Observation and Preference Distribution

The agents in each layer are given the SNR and the action
code as the observed values. In the literature [5], the upper
layers observed the internal state of the lower layers in order
to coordinate between the layers. However, since SNR and
action are direct indicators for inferring the internal state of
the UE while each other’s internal states are indirect indicators,
we do not consider it necessary to observe them.

For SNR, the observed values are quantized linearly because
they need to be quantized when they are given to the model.
As for the action codes, the codes of each agent’s action are
given to the agents as observed values in order to coordinate
the hierarchies. The agent’s own action codes don’t need to
be given as an observed value because they are included in
the expression for the variational free energy equation when
inferring the internal states. This is because when the code of
the upper layer is 0, the code of the lower layer is irrelevant
to the beam vector, and when the code of the lower layer is 0,
the beam vector is determined only by the code of the upper
layer. Therefore, the agent in each layer observe whether the
upper or lower layer agent has code 0 or not.

By adjusting the parameter of the preference distribution
that appears in the expected free energy equation, the prob-
ability distribution of the observed SNR can be adjusted to
the desired form. This is because the agent infers the optimal
action π so that the SNR is observed in the preference
distribution. Since a higher SNR is better for beamforming
tasks, the preference distribution should be adjusted so that it
has a high probability in proportion to the SNR. In this case,
the observed SNR is like a reward in reinforcement learning.

D. Learning

In POMDP, the likelihood P (oτ |sτ ) and transition prob-
ability P (sτ+1|sτ , π) are learnable probability distributions,
and the model can adapt to the environment when these
distributions are adjusted appropriately. The observed values
and states at time τ are denoted by oτ and sτ , respectively.
The likelihood and transition probabilities are expressed as
P (oτ |sτ , A), P (sτ+1|sτ , π,B) using the learnable parameters
A,B respectively. The following update rule is applied to the
parameters A,B in Active Inference [10], [11].

F = EQ[lnQ(s̃, A,B, π)− lnP (s̃, õ, A,B, π)] (11)
A∗ = argmin

A
F , B∗ = argmin

B
F (12)

On the other hand, when the code of the Agent is π = 3, fixing
the recursive transition with a constant probability of 0.95 will
stabilize the internal state of the model without oscillation
and improve the control of beamforming. This is because it
is easier to learn the likelihood P (o|s) by keeping the same
internal state as long as the SNR does not change significantly.
As long as the orientation of the UE from the base station does
not change significantly, the SNR does not change significantly
and the beam vector does not need to be changed, the UE can
be considered to continue to take the same internal state.

IV. EVALUATION

A. Setting

Assume a beamforming task for a single UE moving around
a single base station. The change in the azimuth of the UE
as seen from the base station is considered as a change in
channel conditions, and we will investigate how adaptively
the model can control the beam in response to such a change.
For simplicity, the number of antennas in the array antenna
of the base station is assumed to be M = 4. The base station
also employs a three-layer hierarchical codebook (L = 2). The
UE makes 30 rounds at a constant angular velocity around a
circle of radius 200m centered on the base station. The four
conditions for angular velocity are ω = 0.1, 0.5, 1.0, 1.5 ◦/s.
When the angular velocity ω = 0.5 ◦/s, the linear velocity
is 6.3 km/h, which is approximately the speed at which a
person walks fast. The base station receives SNR feedback
from the UE every 1 s. The noise intensity observed at the UE
is assumed to be −114 dBm [6]. The effect of fading is not
considered. Although the simulation is an overall simplified
environment, it is possible to evaluate the adaptability of the
model to changes in UE azimuth.

B. Method

This paper evaluates the performance of the proposed
method and existing methods in beamforming using hierarchi-
cal codebooks. The existing method is a divide-and-conquer
beam search algorithm, which is commonly used in hierar-
chical codebooks. The proposed method is also compared
with a nondirectional beam to demonstrate the effectiveness of
beamforming methods in dealing with the changing channel
conditions.

1) Active Inference: Since no code is chosen at the top
layer, Agents are assigned to the first and second layers
in a three-layer hierarchical codebook. Active inference first
observes the codes in the current codebook and the SNR of
the UE. Next, a plausible internal state is inferred based on
those observations. Based on those internal states, the optimal
code is then predicted. Finally, the likelihood and transition
probabilities of these states are learned. The upper layer Agent
performs this sequence of steps with a period of Tinfer = 2 s
and the lower layer Agent with a period of Tinfer = 1 s. Note
that active inference can learn the likelihood and transition
probabilities to adapt to channel condition changes, but does
not adjust for other hyperparameters across experimental con-
ditions.

2) BT (Beam Training): We refer to the classical beam
training algorithm employing the divide-and-conquer method
in hierarchical codebooks as BT. In a single search, the
procedures are as in Algorithm 1 where Tcurrent denotes the
time when the search starts.

The conditions of search period Ttrain = 10, 60, 100 s from
the end of one search to the beginning of the next search are
expressed as BT10, BT60, and BT100, respectively. Although
the optimal search period will vary depending on changes in
channel conditions, several appropriate search periods should



Algorithm 1 Beam Training

1: Initialization: l ← 0, t ← tcurrent, γmax ← 0, πi ←
0 (i = 1, · · · , L)

2: while l < L do
3: l← l + 1, πmax ← 0
4: for πl ← 1, 2 do
5: Apply the k-th beam vector wk

l based on (10), and
observe the SNR γ(t) at time t

6: if γmax < γ(t) then
7: γmax ← γ(t), πmax ← πl

8: end if
9: Wait for 1 s, so that t← t+ 1

10: end for
11: if πmax = 0 then
12: break
13: else
14: πl = πmax

15: end if
16: end while

be set to anticipate situations where such changes cannot be
predicted in advance.

3) Nondirectional: This is the condition where the base
station continues to emit an omnidirectional beam all the time
and does not beamform. The performance of adaptively con-
trolled beamforming in response to channel condition changes
must at least exceed the performance of this nondirectional
condition.

C. Result

In Active Inference, it is better to evaluate the results after
learning because learning improves the prediction accuracy of
the optimal beam. In this study, the results of the last 15 rounds
are considered to be the post-learning results, and Active
Inference, BT, and nondirectional conditions are compared.

The waveform shown in the Fig. 1 is the arithmetic mean
of the SNR waveform for each cycle at an angular velocity
ω = 1.0 ◦/s. Since SNR samples at each angle can be taken
for 15 laps, the average value at each angle is calculated and
plotted. The light-colored area represents the 95% confidence
interval of the SNR population mean calculated by the boot-
strap method. Although the 95% confidence interval is not
very reliable due to the small sample size, it may be useful to
get a distribution outline.

From the Fig. 1, it can be seen that in BT, a non-optimal
beam is often applied during beam training, resulting in a large
temporary drop in SNR. Active Inference, on the other hand,
does not cause a large temporary drop in SNR, indicating that
the beam prediction avoids the problem that occurred in BT.

Table I summarizes the SNR averages for each condition.
The values for the method with the highest average under
the same angular velocity condition are highlighted in bold.
It can be seen that Active Inference maintains a high SNR

A

B

C

D

angle [degree]

Fig. 1. SNR averages at each angle from the base station at ω = 1.0 ◦/s
with (A) Active Inference, (B) BT10, (C) BT60, (D) BT100.

over a wide range of channel condition changes and behaves
adaptively to them. On the other hand, BT10 and BT100
perform well under extreme angular velocity conditions (ω =
0.1, 1.5 ◦/s) due to their extreme search period. In addition,
BT60 has a moderately good SNR average under conditions
other than ω = 1.5 ◦/s. Therefore, which search period is
optimal depends on channel condition changes.

TABLE I
SNR AVERAGES IN DB.

Method Angular velocity

0.1 ◦/s 0.5 ◦/s 1.0 ◦/s 1.5 ◦/s

Active Inference 87.0 86.6 86.7 85.3

BT10 84.5 84.4 84.3 84.3

BT60 87.1 86.5 85.1 82.5

BT100 87.2 83.4 80.8 80.2

Nondirectional 83.3 83.3 83.3 83.3

In addition, we examined whether there was a significant
difference between the mean of the Active Inference and
the one of the others. Although the population variance is
unknown and we do not assume that the variances are equal,
we assume that the distribution of the arithmetic mean follows
a normal distribution based on the law of large numbers,
and we used Welch’s test. In multiple significance testing,



p = 0.05/4 = 0.0125 is equivalent to p = 0.05 for the normal
testing and p = 0.01/4 = 0.0025 is equivalent to p = 0.01.
The test results showed that the mean SNR of the Active
Inference method was significantly higher than that of the
other methods at ω = 0.5, 1.0, 1.5 ◦/s (p < 0.00025), except
that of BT60 at ω = 0.5 ◦/s (p = 0.030). There was also
significant difference between the mean SNR of the Active
Inference method and that of other methods at ω = 0.1 ◦/s
(p < 0.00025).

In addition, Fig. 2 shows the distribution of SNR as Letter
Value Plot [12]. Letter Value Plot is an extension of the box-
and-whisker plot, which represents not only quartiles, but also
octiles, hexiles, and so on. At ω = 1.5 ◦/s, it is easy to
see that there is a difference in mean values because of the
difference between the median value of Active Inference and
the one of BT. On the other hand, when ω = 1.0 ◦/s, there
does not seem to be much difference between the median of
Active Inference and the one of BT60, but it can be read that
there is a difference between the octile (the 12.5 percentile).
It can be seen that the distribution of Active Inference tends
to have a generally shorter lower tail compared to that of BT.
This is likely because Active Inference prevents temporary
SNR degradation by predicting optimal beams instead of beam
training.

V. CONCLUSION

In this paper, we propose a beamforming method using
Active Inference for hierarchical codebooks. Classical beam
training methods for hierarchical codebooks always have to
adapt a non-optimal beam during search, which temporarily
degrades the SNR significantly. In addition, under conditions
with channel condition changes such as moving UEs, periodic
beam training is necessary, but it is difficult to optimize
the beam training period in advance. However, the proposed
method was expected to solve the problem of conventional
methods by predicting the optimal beam instead of searching
for it. The results confirmed that, compared to the conventional
beam training method, the active inference method not only
increases the average SNR, but also prevents transient SNR
degradation over a wide range of channel state changes. This
indicates that the proposed method using Active Inference for
hierarchical codebooks is useful for beamforming tasks with
channel condition changes.
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