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Abstract

The number of users using the Internet is increasing every year, and the amount of

traffic on the Internet is growing accordingly. In particular, video traffic has a significant

impact on communication on the Internet. In recent years, the growing popularity of video

streaming services such as YouTube and Netflix, which are services that handle video

content, and the increase in the number of Internet users have increased the demand for

communication quality on the Internet.

In response to the growing demand for communication resources, there is a limit to the

expansion of them. In the area of video streaming technology, there is a technique called

adaptive streaming, which is used to maintain and improve the quality of experience (QoE)

of users even when communication resources are limited. In adaptive streaming, the server

prepares multiple quality video files for a single video, each of which is further divided

into several seconds. The client performs playback while switching the requested video

quality, taking into account information on the playback device, network conditions, and

other factors. The algorithm that determines how the video quality is selected is called

the Adaptive Bit Rate (ABR) algorithm, and various methods have been devised to date.

Most methods assume that parameters related to video playback quality (bitrate, fre-

quency of stops, length, etc.) and the user’s QoE correspond to some function. An example

is the bitrate–QoE relationship, where QoE is defined by a function proportional to the

logarithm of the bitrate. Many existing ABR algorithms do not take into account that

this mapping is different for each user, and they optimize for the so-called “average user”.

Although there are ABR algorithms that take into account the fact that the mapping
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differs from user to user, they do not take into account the possibility that the mapping

may differ depending on the environment or mood in which the user is viewing the video.

Our research group has been studying a method to estimate a user’s QoE during

video viewing in real-time by using an estimation model based on electroencephalogra-

phy (EEG). In this thesis, we focused on the power spectrum of the EEG in estimating

whether the user is dissatisfied with the current playback quality or not. We built and

evaluated our estimation model for binary classification of QoE using the power spectrum

as input features. As a result of experiments, an estimation accuracy of 65% was achieved

on average. We also devised a bitrate adaptation strategy using this QoE estimator and

implemented it on a DASH player. Experiments conducted within the research group

confirmed that the control was able to adapt to user feedback during video viewing.
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1 Introduction

According to the Cisco Annual Internet Report [5], the number of Internet users has been

increasing year by year, growing from 3.9 billion in 2018 to 5.3 billion in 2023. This

indicates that 66% of the world’s population was using the Internet as of 2023, and this

percentage is expected to continue rising. In Internet communications, video content

particularly has a significant impact on network traffic, with streaming a 2-3 hour video

in HD quality generating traffic equivalent to a household’s daily traffic [5]. As 4K and

even higher quality video content becomes more prevalent, the impact of video streaming

services on network communications is expected to become increasingly significant.

To address the increasing demands on Internet communication quality, driven by grow-

ing user numbers and the popularization of video content services such as YouTube and

Netflix, a technology called adaptive streaming has been developed to maintain and im-

prove users’ quality of experience (QoE) within limited communication resources. In

adaptive streaming, streaming servers prepare multiple quality versions of a single video

file, with each version divided into segments of several seconds in length. The client then

plays the video while dynamically switching the requested quality level based on network

conditions and other factors. The algorithms that determine which quality level to select

are called Adaptive BitRate (ABR) algorithms, and they have been extensively studied in

various research [6–8].

FESTIVE [6] is a throughput-based ABR algorithm that estimates network bandwidth

during playback and determines bitrate based on these estimates. In contrast, BOLA [7]

is a buffer-based ABR algorithm that differs from bandwidth-estimating algorithms like

FESTIVE by controlling playback solely based on the state of the playback buffer. BOLA

has been implemented in dash.js, a reference client implementation for DASH written in

JavaScript. FastMPC and RobustMPC, proposed in [8], are hybrid ABR algorithms that

utilize both network estimation and buffer information.

In the algorithms presented in the aforementioned papers [6–8], video playback quality

parameters (such as bitrate, frequency and duration of stalls, etc.) are mapped to user QoE

using functions designed with weighted sums, logarithms, or similar approaches. These

functions are designed to be uniform across different users. This QoE mapping is based on
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the assumption of an “average user” to accommodate the majority of users. As a result,

these algorithms are designed for this “average user” and may not account for individual

preferences and variations in user preferences.

Reference [9] tackled this issue. In Ref. [9], 90 participants were asked to watch videos

and assign quality scores, and the degree of variation in scores among users was analyzed.

The results showed that in approximately 90% of participant pairs, there was no strong

correlation between the assigned scores. This suggests that the concept of an “average

user” does not adequately represent the perception of all users. Based on these findings,

The authors of [9] propose an ABR algorithm that assumes variations among users in their

perception of video playback quality.

In Ref. [9], user-specific QoE is pre-modeled and incorporated into adaptive streaming.

However, in reality, in addition to differences in quality perception among users, factors

such as the user’s environment during video playback and their mood may also influence

their perception of quality. Therefore, to optimize users’ QoE through adaptive streaming,

it is necessary to reflect users’ real-time preference in the control process during video

playback. To incorporate users’ real-time preference into the control process, QoE must

be estimated in real-time using some method. Our research group has been studying

a QoE estimation method using EEG [10, 11], but there remains some challenges (Sec.

2.2.4).

In this thesis, building on this background, this study aims to develop a QoE estimation

method that detects user dissatisfaction in real-time during video playback using EEG

data. We propose a method for estimating a user’s QoE during video viewing that does

not involve an explicit response of QoE by the user. As described below in Sec. 2.2.4,

inputting QoE by buttons or verbally responding to a user’s QoE will cause EEG changes

associated with those actions. This induces estimation errors. For EEG feature extraction,

we use the power spectra before and after events related to video playback, referring to the

experiments in [12]. Furthermore, based on this real-time estimation, we implement an

adaptive streaming system on DASH aiming to improve users’ QoE through this system.

We conduct experiments to confirm that the proposed control is able to adapt to user

feedback during video viewing.
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2 Related work

2.1 MPEG-DASH

MPEG-DASH (MPEG Dynamic Adaptive Streaming over HTTP) is one of the most

standard adaptive streaming (HTTP Adaptive Streaming, HAS) technologies using the

HTTP protocol, and is standardized by the International Organization for Standardiza-

tion ISO/IEC [13]. By dynamically determining the image quality of the video to be

played from the network state, the remaining amount of the client’s playback buffer, etc.,

stable video playback is possible even when the communication environment suddenly

deteriorates during video playback.

How Adaptive Streaming works in DASH MPEG-DASH defines two types of files:

MPD (Media Presentation Description) and segments. Segments are small files that make

up the video to be delivered.

A segment refers to one of the video files that are created by dividing a single video

into short segments. MPD is an XML file that holds the metadata necessary for streaming

video playback, such as the encoding method and bitrate at the time of video encoding,

the segment division unit and acquisition method, etc. In order to provide a streaming

service, it is necessary to encode the provided video in advance with multiple qualities, and

divide the video of each quality every few seconds. Information on these video qualities,

division positions, etc. are described in the MPD file.

Figures 1 and 2 show a diagram illustrating how MPEG-DASH works. The playback

client first acquires the MPD file of the video to be played from the server and obtains

segment information. Based on this information, the playback client requests the server to

specify the video quality of the segment at each segment position, taking into account the

network communication quality and other factors. The HTTP protocol is used for these

communications, including the transmission of video files from the server to the client.

2.2 Our Previous QoE Estimation Method

Our research group has been studying a method for estimating the QoE of users during

video playback [10,11] using EEG. In this section, we provide an overview of the method
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Figure 1: Acquire a MPD

Figure 2: Request Segments

proposed in [10,11].

2.2.1 EEG Headset

We use Emotiv EPOC X (Fig. 3), a headset equipped with 14-channel sensors capable

of measuring EEG signals. EEG data can be recorded from 14 electrode positions (AF3,

F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4), capturing brain activity from

various locations on the scalp (Fig. 4). The EEG data is initially sampled at 2048 sps

(samples per second) within the device and is down-sampled to either 128 or 256 sps

depending on the output settings. The measurement bandwidth ranges from 0.16 Hz to

43 Hz.

Additionally, the EPOC X is equipped with motion sensors (accelerometer, gyroscope,

and magnetometer), which can assist in artifact removal. The sampled data is transmitted

to a computer via either a Bluetooth connection or a USB dongle. EmotivPro, a software

developed by Emotiv, can be used to record both EEG and motion data transmitted from
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the EPOC X.

Figure 3: EPOC X

2.2.2 Overview of Estimation Model

The proposed QoE estimation model in [10,11] is based on a support vector machine that

takes multiple features extracted from the user’s EEG signals as input and outputs one of

three QoE levels: high, neutral, or low.

Input Features For the 14 types of EEG data, various features such as band power,

power spectral density, and discrete wavelet transform values are computed. The extracted

features are the maximum, minimum, median, and variance of those values, resulting in a

total of 546 features.

In the proposed method in [10,11], instead of using all 546 features as input, a subset

of features is selected for estimation. This selection aims to reduce computational time

and prevent overfitting. The feature selection process is performed using a Genetic Al-

gorithm (GA), which optimizes the cross-validation score of the model trained with the

selected features as the objective function.
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Figure 4: Electronodes of EPOC X

2.2.3 Performances

In [11], QoE estimation models were created for multiple participants, and the recall rate

for detecting low QoE was measured using validation data. According to [11], the recall

rate reached a maximum of 74%, with an average of 49.3% and a minimum of 19%,

indicating significant individual differences.

2.2.4 Challenges

Initially, we planned to implement the ABR system based on the model of [10, 11]. How-

ever, when performing QoE estimation for bitrate control, the prediction model consis-

tently outputted “high” level, failing to achieve the estimation accuracy reported in [10,11].

Upon investigation, one of the key experimental issues that emerged as a possible cause

was as follows.

In the development process of an estimation model described in [11], participants were

required to input their QoE levels while watching videos to create training data. However,

this method raised several concerns. The act of inputting QoE involves not only the user’s

emotional state at that moment but also cognitive processes such as decision-making and

physical actions to provide the input. These cognitive and motor activities can influence
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brainwave recordings, potentially leading to the capture of brain activity related to “QoE

input actions” rather than actual dissatisfaction.

If a machine learning model is trained on such data, it may learn to recognize brain

activity associated with the act of QoE input rather than accurately detecting dissatis-

faction. In other words, instead of identifying moments of dissatisfaction, the model risks

responding to the physical action of providing QoE input. Furthermore, since QoE input

does not occur during actual rate control using the trained model, the system encounters

a different situation than in the training phase. As a result, even when a user experiences

dissatisfaction, the system may fail to detect it accurately.

For those reasons, including QoE input actions in training data poses a risk of hindering

accurate dissatisfaction detection. Therefore, necessary was a data collection method that

does not rely on user actions.
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3 QoE Estimation for Video Streaming using EEG

3.1 Design Overview

In this study, we develop an estimation model that detects user dissatisfaction with video

playback based on brainwave data collected during video viewing. The model’s input and

output are summarized as follows:

• Input Features computed from brainwave data. The method for feature computa-

tion will be described in §3.3.

• Output A binary classification result – either 0 (dissatisfied) or 1 (satisfied).

3.2 Preparation of Training Data

3.2.1 Experiment

We describe the experimental procedure used to prepare training data for the QoE esti-

mation model.

Participants watches videos while wearing an EEG headset (EPOC X, Fig. 3). The

videos used in the experiment are from Netflix Open Content [1] and some Vocaloid music

videos (MVs). Some producers of Vocaloid MVs make their video and audio materials

available for derivative works, so we uses them. Each video was approximately 3 to 10

minutes in length, and a total of 8 videos were used. Examples of the videos used are

shown in Figs. 5 and 6.

Figure 5: Netflix Video example [1] Figure 6: Vocaloid MV example [2]
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The prepared videos were edited to include multiple instances of buffering anima-

tions (Fig. 7) to simulate pauses during rebuffering. Based on [14], each video contained

pauses lasting approximately 3 to 10 seconds at specific points, occurring 1 to 5 times

within a 10-second window. These inserted pauses were designed to induce noticeable

QoE degradation at their respective positions.

Multiple short-interval pauses (within 10 seconds) were grouped as a “pause group,”

and the interval between consecutive pause groups (from the end of the last pause to the

start of the next) was set to at least 30 seconds. The editing structure is illustrated in

Fig. 8.

Figure 7: Rebuffering Emulation Example [3]

Figure 8: Illustration of Video Edit [4]

After watching each video, participants are asked to complete a questionnaire regarding

their experience with the content. The survey includes the following questions:

• Content of the video (7-point scale): boring, uninteresting ↔ exciting, interesting
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• Overall playback quality (7-point scale): Poor ↔ Good

• Which aspects influenced your perception of playback quality? (Multiple choices

allowed)

– Sound quality

– Video quality

– Duration of pauses

– Frequency of pauses

An important point is that, in this experiment, no additional tasks (e.g., inputting

QoE) are specified while the participants are watching the video. This measure ensures

that the brainwave data does not include any influence from the QoE input behavior, as

explained in Sec. 2.2.4.

3.2.2 EEG Epoching and Labeling

The brainwave data obtained during watching video is classified into the following two:

• Brainwaves during the pause group (labeled as “dissatisfied”).

• Other (labeled as “satisfied”).

For the brainwaves labeled as “dissatisfied,” a random 3-second segment of brainwave

data is epoched, and, with the start time of the corresponding pause group set to 0,

brainwaves from −4 seconds to −2 seconds are also epoched as baseline brainwaves. In

this thesis, the former is referred to as the “target brainwave” and the latter as the “baseline

brainwave.”

Similarly, a random 3-second segment of brainwave data is epoched from the brainwaves

labeled as “satisfied,” and the baseline brainwave is saved from −4 seconds to −2 seconds

based on the start time of the extracted segment. Both the target brainwave and the

baseline brainwave are stored as pairs.

In this process, brainwave data obtained from videos where participants indicated

they were bored are excluded. Additionally, among the epochs labeled as “dissatisfied”
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those that did not mention the duration or frequency of playback interruptions in the

post-viewing survey are also excluded.

3.3 Feature Extraction from EEG

A classification model for predicting whether the user is dissatisfied or not with video

playback is built based on the relative power (dB) referenced to the power immediately

preceding rebuffering as the baseline, as mentioned in [12]. The relative power is calcu-

lated by transforming the EEG signal into a time-frequency representation using complex

wavelet transform, then computing the power for each frequency component, and aver-

aging the power within the frequency band of interest. The calculation is performed as

follows:

First, a mother wavelet ψ(t) is prepared, and by scaling it, we obtain the wavelet ψf (t)

for the desired frequency f . The frequency f is varied from 1 to 30 Hz with a step of 0.5

Hz, preparing multiple wavelets for the 1-30 Hz range.

The prepared wavelets are then used to perform the complex wavelet transform on the

EEG signal x(t). Specifically, the transformation is performed as shown in Eq. (1), where

∗ represents the complex conjugate.

Tf (x) =

∫ ∞

−∞
x(t)ψ∗

f (t− x) dt (1)

The EEG signal Tf (x) after the wavelet transform has a complex number representa-

tion. By calculating the squared distance from the origin, the time-frequency representa-

tion of the power of the EEG signal, P (t, f), is obtained Eq. (2).

P (t, f) = |Tf (t)|2 (2)

The time-domain average of the baseline EEG power is calculated to obtain the baseline

PB(f). Similarly, the time-domain average of the EEG power corresponding to the baseline

is also calculated and denoted as PM (f). Using these, the relative power of the EEG signal

with respect to the baseline in the interval of interest is computed as shown in Eq. (3).

Since the EEG signal can be obtained from 14 electrodes, as shown in Fig. 4, the relative

power can be calculated for each electrode.
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R(f) = 10× log10(PM (f)/PB(f)) (3)

The features used in the estimation model are limited to 3 of the 14 electrodes, and

for each of these three electrodes, the frequency band of interest is selected from the alpha

band (8-13 Hz), beta band (14-30 Hz), theta band (4-7 Hz), or delta band (0.5-3.5 Hz). The

final features are obtained by averaging the relative power within these selected frequency

ranges. Therefore, for each subject, three features (e.g., F3 (14-30 Hz), O1 (0.5-3.5 Hz),

and P8 (14-30 Hz)) are used in the estimation model.

In the wavelet transform described above, the mother wavelet we use is Complex Morlet

Wavelet (Eq. (4)) with parameters B = 0.2 and C = 1.0.

ψ(t) =
1√
πB

exp

(
− t

2

B

)
exp (2πCti) (4)

Note that the parameters of Complex Morlet Wavelet used here differ from those

in [12]. This is due to simplify the implementation with the library used in this study.

However, we confirmed that the estimation accuracy remains almost the same when using

the parameters from [12].

3.4 Model Building and Training

3.4.1 QoE Estimation Model

We use a Support Vector Machine (SVM) as the estimation model, based on a previously

developed model by our research group [11].

3.4.2 Feature Selection and Hyperparameter Tuning

As mentioned in §3.3, without reducing the features, we would obtain (number of electrodes)×

(4 frequency bands) features. In this study, those would be 14×4 = 56 features. To select

promising features, we use a hyperparameter optimization framework to reduce the fea-

tures. The optimization framework explores which features provide the highest accuracy

using k-fold cross-validation. In addition to feature selection, hyperparameters such as

the kernel function and cost parameter C of the SVM are also optimized.
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3.5 Implementation

We implemented the estimation model using Python with some libraries. The SVM model

is implemented using scikit-learn, feature calculation is performed by PyWavelets, and

hyperparameter tuning is done by Optuna.
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4 Bitrate Adaptation based on Estimated QoE

4.1 System Overview

We propose an ABR (Adaptive Bitrate) control system that can reflect changes in percep-

tion of quality due to some factors such as playback environment or user mood in real-time

control. By using estimated QoE as feedback and updating the parameters of the QoE

function used for bitrate decision, the system incorporates the user’s reactions into the

control.

The components of our ABR control system proposed in this thesis are as follows:

• Video Player acquires video files from a server and plays videos. Proposed ABR

Algorithm is implemented in this component.

• QoE Estimator estimates QoE of a user watching videos. It outputs 0 or 1, each

of which indicates “dissatisfied” or “satisfied” respectively.

• QoE Function Updater Based on an estimation from QoE Estimator, this com-

ponent updates the parameters of QoE functions that maps quality metrics and user

QoE. It receives playback metrics from Video Player, and an estimated QoE from

QoE Estimator, so that it can update the parameters.

Fig. 9 illustrates the components and their interactions.

4.2 Bitrate Adaptation Algorithm for Improving QoE

The goal of our bitrate adaptation is to optimize QoE while considering available network

resources. We devised an ABR algorithm using estimated QoE, based on Model Predictive

Control (MPC) approach proposed in [8]. To optimize QoE, estimated QoE is used to

model real-time mappings from video bitrate and pause duration to user QoE.

Proposed Algorithm Let the video to be played be divided into K segments. Let

R be the set of available bitrates, and the k-th segment select a bitrate Rk ∈ R. The

remaining playback time in the buffer at time t is denoted by B(t). Let Q1(R) represent the

bitrate–QoE mapping function, which is updated in real-time by the estimated QoE, and
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Figure 9: The Architecture of our ABR System

Q2(x) represent the pause-duration–QoE mapping function, which is similarly updated in

real-time by the estimated QoE.

When determining the bitrate of the k-th segment, let the time at that moment be tk.

Denote the predicted throughput from time tk to tk+N as T̂[tk,tk+N ].

Let RT(B(tk), T̂[tk,tk+N ], Rk, . . . , Rk+N−1) represents the function that calculates the

maximum pause time that occurs during the next N segments when the bitrates are set

to Rk, Rk+1, . . . , Rk+N−1.

Using Eq. (5), bitrates Rk, Rk+1, . . . , Rk+N−1 are selected such that the optimal QoE

is obtained over the next N segments, and choose Rk as the next bitrate.

arg max
Rk,...,Rk+N−1∈R

( 1

N

k+N−1∑
i=k

Q1(Ri)
)
+Q2

(
RT(B(tk), T̂[tk,tk+N ], Rk, . . . , Rk+N−1)

)
(5)
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4.3 Parameter Update of User QoE Function based on Estimated QoE

Let T denote the estimation period of QoE. Every estimation period T , the user’s QoE q ∈

{0, 1} during video playback is estimated, and the estimated QoE q is recorded according

to one of the following conditions:

• If the video is playing at the time of estimation, a tuple consisting of the playback

label, the estimated QoE, and the current bitrate (Playback, q, b) is stored.

• If the video is paused at the time of estimation, a tuple consisting of the rebuffering

label, the estimated QoE, and the elapsed time since the pause started (Rebuffering,

q, r) is stored.

From the recorded QoE information, the most recent nb records related to bitrate and

the most recent nr records related to rebuffering duration are used to derive the mappings

between video bitrate and QoE, as well as between pause duration and QoE, by fitting

them to sigmoid curves with reference to [12]. Let σa,b(x) denote a sigmoid curve defined

as σa,b(x) = 1
1+e−a(x−b) .

• The most recent nb QoE records about “Playback” are used to fit the bitrate–

QoE relationship to a sigmoid curve (σap,bp(x)) via logistic regression, denoted as

Q1(R) (e.g., Fig. 10).

• The most recent nr QoE records about “Rebuffering” are used to fit the pause-

duration–QoE relationship to a sigmoid curve (1−σar,br(x)), denoted as Q2(x) (e.g.,

Fig. 11).

4.4 Rebuffering Estimation

Using Algorithm 1, all rebuffering events that occur when selecting the bitratesR1, R2, . . . , RN ∈

R for the next N segments are determined. This algorithm requires not only the selected

bitrates but also the current buffer length, the current rebuffering duration, and the length

of one segment. Note that this algorithm assumes that the estimated throughput remains

constant within the interval where rebuffering is estimated.
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Figure 10: Bitrate–QoE function (Q1(R))

example

Figure 11: Pause-Duration–QoE function

(Q2(x)) example

Since this algorithm determines all rebuffering durations that will occur over the next

N segments, we can calculate RT by the maximum of these values.
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Algorithm 1 Estimate Future Rebuffering Events
Require: Require these parameters and constants.

• current_buffer_level: the current buffer level [s].

• current_rebuffering_time: the current rebuffering time [s]. if

current_buffer_level > 0, this must be 0.

• selected_bitrates: an array of selected bitrates [kbps].

• estimated_throughput: an estimated throughput [kbps].

• SEGMENT_LENGTH: the length of a segment [s].

Ensure: An array of the rebuffering length.

1: rebufferings← []

2: buffer_level← current_buffer_level

3: rebuffering_time← current_rebuffering_time

4: for k = 1 . . . N do

5: download_size← selected_bitrates[k]× SEGMENT_LENGTH

6: download_time← download_size/estimated_throughput

7: buffer_level← buffer_level− download_time

8: if buffer_level < 0 then

9: rebuffering_time← rebuffering_time + (−buffer_level)

10: buffer_level← 0

11: end if

12: if rebuffering_time > 0 then

13: Add rebuffering_time to rebufferings.

14: end if

15: buffer_level← buffer_level + SEGMENT_LENGTH

16: rebuffering_time← 0

17: end for
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5 Evaluation

5.1 Performances of QoE Estimation

Five members of our laboratory were recruited to conduct an experiment to create an

estimation model. The steps of the experiment is described in §3.2.1.

We show the performances of the estimation models in Tables. 1, 2, 3, 4, and 5.

Additionally, we show features used in each model in Table 6.

Table 1: Subject 01

Metric QoE=0 QoE=1

Precision 0.6111 0.5135

Recall 0.1692 0.8906

F1-score 0.2651 0.6514

Accuracy 0.5271

Table 2: Subject 02

Metric QoE=0 QoE=1

Precision 0.7059 0.6346

Recall 0.5581 0.7674

F1-score 0.6234 0.6947

Accuracy 0.6628

Table 3: Subject 03

Metric QoE=0 QoE=1

Precision 0.5833 0.6471

Recall 0.7447 0.4681

F1-score 0.6542 0.5432

Accuracy 0.6064

Table 4: Subject 04

Metric QoE=0 QoE=1

Precision 0.7500 0.6579

Recall 0.5806 0.8065

F1-score 0.6545 0.7246

Accuracy 0.6935

Table 5: Subject 05

Metric QoE=0 QoE=1

Precision 0.7419 0.7500

Recall 0.7667 0.7241

F1-score 0.7541 0.7368

Accuracy 0.7458
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Table 6: Selected Features

Subject Features

Subject 01 F7(4–7Hz), T7(0.5–3.5Hz), T8(0.5–3.5Hz)

Subject 02 F3(14–30Hz), O1(0.5–3.5Hz), P8(14–30Hz)

Subject 03 O2(4–7Hz), F8(0.5–3.5Hz), AF4(0.5–3.5Hz)

Subject 04 F7(4–7Hz), T7(14–30Hz), T8(14–30Hz)

Subject 05 P7(4–7Hz), T8(14–30Hz), F4(8–13Hz)

As a result, the model achieved an estimation accuracy of up to 75%, with a minimum

of 53%, and an average of 65%. When examining the Recall value at QoE = 0, which

indicates the performance for detecting dissatisfaction when QoE drops, the values were

a maximum of 77%, a minimum of 17%, and an average of 56%. This indicates that the

developed estimation model can detect just under 60% of the declines in user QoE during

video playback.

Furthermore, when checking the Precision value at QoE = 0, the maximum was 75%,

the minimum was 58%, and the average was 68%. This means that when the model outputs

QoE = 0, there is a slightly less than 70% chance that the user is actually dissatisfied.

Next, we examine the selected features. Different features were selected by different

subjects, but the electrode positions (shown in Fig. 4) that were used by multiple subjects

include F7, T7, and T8. In regarding to frequency bands, the alpha band (8–13Hz) was

used less frequently, while the beta band (14–30Hz), theta band (4–7Hz), and delta band

(0.5–3.5Hz) were used more evenly.

5.2 Adaptive Bitrate Control Experiments

5.2.1 Implementation of DASH Client

For the implementation of the actual system, the video player was implemented using the

client-side library for DASH, dash.js [15] v4.7.4. The ABR algorithm explained in §4 was

implemented using dash.js’s customAbrRule.

As described in §4, the system components include the Video Player implemented

with dash.js, QoE Estimator for estimating the user’s QoE during video playback, and
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Figure 12: The Architecture of our Implemented System

QoE Function Updater for updating the parameters of the QoE function. Since QoE

Estimator is implemented in Python, QoE Function Updater was also implemented

in Python to use QoE Estimator as a Python module. The implementation of fitting

the QoE function to the sigmoid function in the parameter update of QoE Function

Updater, as explained in §4, was done using the scikit-learn library.

Due to this implementation, Video Player and QoE Function Updater run in

different processes, so they communicate with each other via WebSocket. The architecture

of the implemented system is shown in Fig. 12. As illustrated in the figure, the WebSocket

server running QoE Estimator and QoE Function Updater is on the same machine

as Video Player. Video Player connects to this WebSocket server every time it plays

a video.

As for the content of communication via WebSocket, Video Player sends event in-

formation such as the start/stop of video playback, buffer levels, and changes in video

quality to the local WebSocket server. On the other hand, the WebSocket server periodi-

cally estimates the user’s QoE during video playback. Based on the estimation result and

the playback status information received from Video Player, it determines the new QoE

function parameters and sends them back to Video Player via WebSocket.

28



5.2.2 Experimental Setup

To verify the feasibility of whether bitrate control customized to individual users, we

conducted an experiment with two members of our research group as subjects (Fig. 13).

The details of the machines and related software used in the experiment are shown in

Table 7.

Item Details

Browser Google Chrome v132.0.6834.112

OS Edition Windows 11 Education

OS Version 24H2

OS Build 26100.2894

Processor AMD Ryzen Threadripper 3960X 24-Core Processor 3.80 GHz

Installed RAM 32.0 GB (31.9 GB usable)

Monitor DELL U2722DE 2560x1440, 60Hz 24bit

Table 7: Experimental Environment

In the experiment, to simulate a poor network environment, bandwidth throttling was

applied using the Network Throttling feature in Google Chrome’s Developer Tools. We

created a Node.js script to apply the throttling using the chrome-remote-interface [16]

library. The bandwidth limitations were set based on measured data of video streaming

over a 3G/HSDPA mobile connection in Norway [17]. To apply the bandwidth throttling

at the moment video playback starts, the Node.js script for throttling and the player

were made to communicate also via WebSocket. The script was implemented to apply

throttling when it receives the start playback notification from the player. The same

throttling profile was used for all sessions in the experiment.

The videos played in the implemented DASH client were encoded in 6 profiles shown

in Table 8, based on the experiment conducted in [18]. The encoding was done using

ffmpeg [19]. Additionally, the segment length of each video in the experiment was set to

2 seconds.

Listing 1 is our encoding command of ffmpeg.

We used MP4Box [20] to generate MPD files from encoded videos.
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Figure 13: Experimental Scene

Table 8: Encode Profiles

Bitrate [bits/s] Resolution Maxrate Bufsize

300k 426x240 360k 720k

750k 640x360 900k 1800k

1200k 854x480 1440k 2880k

1850k 1280x720 2220k 4440k

2850k 1920x1080 3420k 6840k

4300k 2560x1440 5160k 10320k
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Listing 1 FFmpeg encode command

ffmpeg -i <Input> \

-vf "scale=<Resolution>" \

-vcodec libx264 -vb <Bitrate> -maxrate <Maxrate> -bufsize <Bufsize> \

-r <Frame rate of the input> \

-x264opts "no-scenecut" -g 15 \

-acodec aac -ac 2 -ab 128k \

-frag_duration 2000000 \

-movflags "empty_moov" \

<Output>

5.2.3 Results

Figures 14 and 15 show the two metrics of the Subject 02’s experiment, each of which

corresponds to the metrics of the first playback and of the later playback, respectively. In

the experiment, buffer levels, changes in quality, estimated QoE, and parameters of QoE

Function are stored. These figures show them.

Descriptions of the Figs. 14 and 15 The figure consists of five graphs, with the

horizontal axis representing time, where the time of playback start is set to 0. The top

graph shows the remaining buffer level at each playback time. It indicates that buffering

occurs when the buffer level reaches 0. The second graph from the top shows the changes

in the video bitrate and the throughput used in network throttling in Developer Tools.

The orange line represents the bitrate, and the red line represents the throughput. The

third graph from the top shows the changes in the estimated QoE, which was periodically

estimated during video playback by the estimation model from §3. The fourth graph from

the top shows the changes in the Bitrate–QoE relationship function Q1(R) which is used

in the ABR algorithm explained in §4. The color of the heatmap corresponds to the QoE

values on the color bar on the right of the graph, where yellow indicates a QoE close to

one and navy blue indicates a QoE close to zero. The bottom graph shows the changes

of the Pause-Duration–QoE relationship function Q2(x), which is also used in the ABR
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Figure 14: Playback Metrics of Subject 02 (1)
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Figure 15: Playback Metrics of Subject 02 (2)
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algorithm explained in §4. The color corresponding to QoE is the same as in the Q1(R)

graph. There are gray shaded areas in the graphs, which indicate periods where playback

pauses occurred during this time.

Discussion In Fig. 14, a pause occurs around the 20–40 second mark, and during this

time, the estimated QoE reaches 0 (dissatisfied), which causes a change in the relationship

between pause duration and QoE, represented by Q2(x). From this point, it can be

confirmed that before 40 seconds, a bitrate of 4300 kbps was selected, but afterward, the

bitrate is limited to stay below the network throughput.

Next, examining the later playback data after the playback of Fig. 14, shown in Fig. 15,

we can see that the bitrate is controlled to stay below the network throughput from the

beginning, and since the estimated QoE does not change much, the parameters of the QoE

function also remain unchanged.

To summarize, after dissatisfaction with the pause was detected through the estimated

QoE, control was adjusted to avoid further pauses, and in later playback, the control was

maintained because there was little feedback of dissatisfaction. In other words, it was

confirmed that the system implemented in this study was able to perform user-adaptive

control during actual viewing by the subjects.
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6 Conclusion

In this thesis, we proposed a method for real-time QoE estimation of whether a user

is dissatisfied with the current playback quality while watching a video. The proposed

method decomposes the user’s brainwaves into individual frequency components using

complex wavelet transform and calculates the power of specific frequency bands as input.

We built a support vector machine model to classify whether the user was dissatisfied or

not, and evaluated its performance. Experimental results conducted in our laboratory

showed that the estimation accuracy ranged from a minimum of 53% to a maximum of

75%, with an average accuracy of 65%. Additionally, the recall value, which indicates the

percentage of QoE degradation that was detected, ranged from a minimum of 17% to a

maximum of 77%, with an average of 56%. This suggests that our estimation model was

able to detect nearly 60% of QoE degradation on average. Furthermore, we designed an

adaptive bitrate control method utilizing this QoE estimation model and implemented it

on DASH. Experiments within our research group confirmed that the system was able to

adjust playback in response to user feedback.

The estimation method proposed in this study achieved a maximum accuracy of 75% in

binary classification. To realize adaptive streaming that better aligns with user preferences,

a more accurate estimation method would be necessary. Additionally, since the proposed

method produces a binary output, a model capable of providing more gradual estimations

would be preferable. Improving these aspects will be a future research topic for our group.

The bitrate decision algorithm for adaptive streaming proposed in this study focuses

on bitrate levels and the duration of playback pauses. However, other factors may also

impact users’ QoE, such as the frequency of playback pauses, etc. Incorporating these

elements into the algorithm could enable more user-adaptive control and further improve

QoE. Addressing these challenges will also be a future research topic for our group.
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