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Abstract—Edge computing has emerged as a critical paradigm
in AI and IoT applications, offering reduced latency and im-
proved efficiency over traditional cloud-based systems. However,
the limited computational resources at the edge and the need
for energy-efficient operations pose significant challenges. In
this paper, we propose a novel approach for edge-cloud co-
operation using the Value-Sensitive Bayesian Attractor Model
(VSBAM). Our method focuses on optimizing resource allocation
and decision-making processes in edge computing environments,
taking into account the computational constraints and power
consumption requirements of both edge and cloud systems.
Although the optimization of resource allocation is problematic in
terms of its computation time, VSBAM reduces the computation
time by performing the computation in a distributed manner for
each session. Also, for the convergence problem in a distributed
system, VSBAM can converge quickly by finding a quasi-optimal
solution in a short period of time based on user values. Through
simulation-based evaluations, we demonstrate that our approach
can significantly reduce power consumption while maintaining
high performance, especially in scenarios involving numerous
sessions. Our findings also show that our decentralized control
strategy is robust against power model errors and performs
comparably to centralized control methods.

Index Terms—Bayesian Attractor Model, Value-Sensitive,
Edge-Cloud Cooperation

I. INTRODUCTION

Edge computing, which processes information near terminal
devices, has gained significant attention, particularly in AI
technologies as highlighted [1]. This approach is especially
relevant for latency-sensitive tasks like teleoperation, where
traditional cloud-based processing suffers from considerable
communication delays [2]. However, deploying large-scale
AI models directly on edge devices poses challenges due
to the limited computational resources available at the edge
compared to those in cloud environments. The technique of
AI distillation, as introduced by [3], offers a solution by
compressing large AI models into smaller, more manageable
versions. This adaptation enables the execution of AI tasks
on edge computers, which typically have fewer computational
resources. Nevertheless, it’s acknowledged that these distilled,
smaller models often exhibit reduced accuracy compared to
their larger counterparts. Moreover, power consumption is a
critical factor in practical applications, necessitating careful
consideration of the varying power consumption profiles of
different computing platforms. Therefore, it’s crucial to bal-
ance the distribution of tasks across edges and cloud systems,
taking into account the interplay between computational ca-
pacity, model accuracy, and energy efficiency.

Several methods have been proposed for the collaboration
between edge and cloud systems. A typical approach involves
dividing the roles of learning and inference. Due to the greater
resource requirement for learning compared to inference,
learning is performed in the cloud, while inference is carried
out on the edge. Another method involves splitting the learning
data, known as federated learning, where edge devices use
local raw data for learning, and the cloud integrates models
learned at the edge. This protects the data privacy of each edge.
While fewer in number, some studies have also considered the
division of roles during inference. In practice, since inference
processing is central, this paper focuses on the efficient use of
resources through collaboration during inference. Specifically,
by dividing inference processing between edge and cloud, we
consider saving resources by terminating inference early at the
edge.

Collaboration in inference requires switching between edge
and cloud processing depending on the situation of each
inference session. For instance, in scenarios like image recog-
nition in a crowd, where the use of high-accuracy models is
necessary, a significant amount of data needs to be transferred
to the cloud if a certain level of accuracy is not maintained
at the edge. Conversely, if high accuracy is not required,
deploying a lightweight model on the edge can lead to de-
cisions being made almost entirely at the edge, thus saving
substantial resources. However, understanding the situation
of each session is impractical due to the high observational
and synchronization costs. Therefore, it’s desirable for each
session to independently understand its situation and select the
optimal model. Nonetheless, distributed control often makes
it challenging to achieve an overall optimal solution due to
conflicts with other sessions.

This paper proposes a collaboration method for inference
processing between edge and cloud using the Value-Sensitive
Bayesian Attractor Model (VSBAM) [4]. Value sensitivity
allows humans to make choices when faced with multiple
alternatives with different values, and is influenced by the sum
of the values of the alternatives (called the magnitude) [5],
[6]. This enables individuals to avoid deadlocked choices due
to small differences between high-value options or to wait
for better choices in the future when only low-value options
are available [7]. Such properties are also known to play
an essential role in consensus building in group decision-
making [8].



This paper makes the following contributions:

• We formulate the problem of reducing power consump-
tion in the collaboration between edge and cloud through
the partitioning and placement of AI models.

• We propose the Magnitude Sensitive Bayesian Attractor
Model (MSBAM) that captures changes in AI input data
as environmental fluctuations, enabling rapid decision-
making for adaptation to such changes.

• We demonstrate that solutions obtained with the proposed
method can reduce power consumption equivalently to
those obtained with an optimization solver, especially in
scenarios with numerous sessions, but within a shorter
computation time.

• We shows the robustness of the proposed method against
errors in the power model.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model of edge-cloud
cooperation. In Section III, we introduce the VSBAM. In
Section IV, we propose the distributed method of edge-
cloud cooperation by applying the VSBAM. In section V,
we evaluate the behavior of the proposed model. Finally, in
section VI, we summarize and discuss future work.

II. EDGE-CLOUD COOPERATION

To effectively operate AI, it is essential to efficiently utilize
resources in both edge and cloud computing. AI demands
different resource quantities for learning and inference, and the
required resources and achievable accuracy vary with model
size. Techniques like distillation, quantization, and pruning are
used to create variations in model sizes. However, resource
availability differs spatially, with smaller resources typically
at the edge and larger resources at the cloud. Therefore,
deploying different models at the edge and cloud according to
resource constraints and collaborating between them enables
the maximum utilization of resources in AI operations.

A. Existing Methods of Cloud-Edge Collaboration

Various methods exist for integrating cloud and edge com-
puting [9]–[11]. One method involves dividing roles between
cloud and edge from the perspective of learning. Generally,
as learning demands more resources than inference, learning
is conducted in the cloud, while inference is done at the
edge. Another method involves role division based on the
data used for learning. A prominent example is federated
learning, where edges use local data for learning, and the cloud
integrates models learned at edges. This approach protects data
privacy at each edge. Inference can also be divided between
cloud and edge, where the AI model is split into a front part
processed at the edge and a rear part at the cloud. Particularly,
if conclusions can be drawn from intermediate results of the
front part, inference can be done with lightweight processing
at the edge. Another method involves splitting the amount of
data processed between edge and cloud, offloading to the cloud
when edge resources are insufficient. The suitability of these
collaboration methods varies with the application, and they
can often be combined for optimal use.
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Fig. 1. System Model

B. System Model
This paper focuses on cloud-edge collaboration in the AI in-

ference phase, particularly targeting AI for anomaly detection
in surveillance cameras. Fig. 1 shows the system model. Video
data acquired by surveillance cameras is input to the AI, and
the AI detects abnormalities such as the presence of suspicious
persons. In anomaly detection, multi-stage determinations can
efficiently utilize resources while improving accuracy. If clear
anomalies are detected in the initial stages, subsequent stages
can be skipped to save resources. We propose placing initial
and subsequent recognition models at the edge and cloud, re-
spectively, and making decisions at the edge alone if accuracy
in the initial stage is sufficiently high. The data is assumed
to arrive at fixed intervals, and processing times at the edge
and cloud are expected to fit within certain time constraints.
Placing a larger model at the edge can conclude most process-
ing there, skipping cloud processing, but would always require
significant edge processing. Conversely, a smaller model at the
edge lightens its load but reduces the probability of skipping
cloud processing. The optimal model placement depends on
the current data situation; for instance, in crowded or complex
scenes, a low-accuracy model at the edge may necessitate
transferring almost all data to the cloud. Thus, switching
models according to data conditions is necessary.

C. Formulation as an Optimization Problem
The efficiency of resource usage is evaluated by the total

power consumption P . The P includes the load-independent
power Pconst and the load-dependent power. Load-dependent
power includes power consumed by computers and networks.
Each is modeled as proportional to the number of flops
processed and the amount of data. They depend on how the
model is partitioned (m,m′). The actual power consumption
and the model have errors, but we will consider the impact
of these errors in the evaluation section. For data x offloaded
to the cloud, in addition to the power consumption of the
edge, the power consumption of the cloud and the power
consumption of the network in transferring the data to the
cloud are included. For data that is not offloaded, only edge
power consumption varies load-dependently. Similarly for
latency, processing latency at the edge and in the cloud, as
well as transmission latency in the network are considered.
To ensure real-time performance, constraints are set so that



latency is below a certain level. Also, to guarantee the system,
we constrain the confidence Ae(x,m) of inference by the edge
AI on the data to be above a certain value.

The problem is formulated to find a model placement that
satisfies this, along with latency constraints.

minimize : P =
∑
(x,s)

{Pe(xs,ms) (1)

+c(xs,ms)(Pc(xs,m
′
s)

+Pec(xs,ms))}+ Pconst

s.t. : D(xs,ms) = De(xs,ms) (2)
+c(xs,ms)(Dc(xs,m

′
s)

+Dec(xs,ms)) < D

c(xs,ms) = 1a:a<A(Ae(xs,ms)) (3)

where s is the session, x is the input video, m and m′ are
the initial and subsequent models, Pe, Pc, and Pec are the
power consumption of edge, cloud, and network respectively;
De, Dc, and Dec are the latencies of edge, cloud, and network
respectively; D is the upper limit of latency constraints; A is
the lower limit of accuracy constraints; and c(x,m) indicates
whether the cloud is utilized or not, with 1X(x) being the
indicator function.

III. VALUE-SENSITIVE BAYESIAN ATTRACTOR MODEL
(VSBAM)

In this chapter, we propose a new model of decision-
making that is magnitude sensitive and highly applicable to
engineering. First, we introduce the basic model, BAM. Our
research group has applied BAM to various network control
problems, and BAM is a model with high applicability. How-
ever, since the original BAM is a feature-based classification
model, which is different from the value-based decision-
making targeted in this paper, we introduce an extended BAM
for value-based decision-making. We then introduce a value-
sensitive model.

A. Value-based BAM
BAM [12] is a model of brain decision-making that involves

the process of updating internal states based on observations,
and making decisions based on the updated internal states.

The BAM models the process of reaffirmation, in which
features are used as input and representative values are up-
dated by comparing them to representative values bound to
a previously given choice, called an attractor. The specific
state update is performed by Bayesian updating based on
observed values, using the relationship between attractors and
representative values, and the endogenous dynamics of the
state as a generative model. The generative model is as follows

zt = f(zt−1) + qwt (4)
xt = Mσ(zt) + svt (5)

where xt is the observed value, zt is the internal state, and
wt, vt is the noise. Eq. (4) is an expression for the internal
variation of the state, where f is the Hopfield dynamics with
K attractors ϕ1, · · · , ϕK . Eq. (5) is an expression for the
relation between representative values and attractors, where
M is a matrix of representative values µi corresponding to the

attractor ϕi and M = (µ1, · · · , µK). The σ(zt) is an element-
wise sigmoid function. Also, q, s are the parameters for the
magnitude of each noise term, called dynamic uncertainty and
sensory uncertainty.

In [4], we introduce the value-based decisions in the BAM.
Let Vi,t be the value of choice ϕi at time t, and let BAM
obtain a value estimated value v̄i,t through reward feedback
information. This sequence of value estimates is the informa-
tion that BAM can observe at time t, and the observed value
as value is defined as follows.

xt = (v̄1,t, · · · , v̄K,t) (6)

In value-based decision-making, we need to find the highest-
value alternative. To handle this in the recognition scheme
of BAM, the representative value µi of the choice ϕi is the
observed value such that the choice is of maximum value.
That is, using the standard value v̄ and the maximum value
v̄max = max{v̄1,t, · · · , v̄K,t}, we determine the representative
value as follows

µi = (v̄0, · · · , v̄0,
(i)

v̄max, v̄0, · · · , v̄0). (7)

where i-th element is v̄max and the other elements are v̄0 = 0.
Given observed value, each confidence P (zt = ϕ|xt) is

calculated.

B. Value Sensitivity

Several models have been proposed that are sensitive to
value considerations. In [4], we have proposed a model that
integrates value-based Biologically Adaptive Models (BAM)
with the Leaky Competing Accumulator (LCA), as detailed
in [5], [13]. This paper also employs this model to coordi-
nate inference processes between edge computing and cloud
computing.

In the LCA model, the internal state is updated by a
drift term and a noise term. The value magnitude sensitivity
is expressed by varying the drift term in a stimulus size-
dependent manner. Specifically, the internal state Xi for each
option is updated according to the following equation.

Xi,t+1 = Ii(t) + (1− γ)Xi,t − β
∑
j ̸=i

Xj (8)

where Ii(t) represents the stimulus magnitude, and γ, β
are the parameters. The first term indicates that the more
valuable the choice, the larger the movement of the state.
The second term indicates self-activation, and the third term
indicates suppression of other choices by the active choice. In
the steady state, only one higher-value option is active, similar
to BAM.

In value-based BAM, the definition of M,xt in eq. (5)
indirectly causes an internal state update according to the
magnitude of the value. However, it is s that controls the effect
of Eq. (5) on the state update. The smaller s is, the more
strictly x follows the equation, and the more deterministically
x updates in the Bayesian update.

Therefore, by varying s as a function of value magnitude,
the value-based z update can be more directly controlled. In



this paper, s is varied by the reciprocal of the magnitude as
follows.

s =
s0
Vt

(9)

where s0 is the reference sensory uncertainty and Vt =
∑

i v̄i
is the magnitude. Assume s0 = 1 unless otherwise noted.

IV. CLOUD-EDGE COOPERATION BY VSBAM
This chapter presents a method for solving the cloud-

edge collaboration problem using the Value-Sensitive Bayesian
Attractor Model (VSBAM). Specifically, we map the attrac-
tors and values of VSBAM to the cloud-edge collaboration
problem and propose a method to compute the distribution of
models for each session using VSBAM, enabling a decentral-
ized approach to solving the problem.

A. VSBAM-Based Solution for Cloud-Edge Collaboration
Problem

1) Attractors: We define the combination of model divi-
sions across all sessions (ms,m

′
s) as attractors. The division

for each session is determined by the layers or components of
the AI model.

2) Values: The value of an attractor is determined by the
total power consumption of the model division it represents.
This value is updated according to observed results. As lower
power consumption is desired and considered better, the value
is set as the inverse of the total power consumption. Pmax is
a constant to ensure the value remains positive:

F (a) = Pmax − P (10)

3) Introducing Latency Constraints: Since VSBAM cannot
directly handle constraints, we introduce latency constraints
into the value of the attractors. Attractors that violate latency
constraints are penalized:

Fd(a) = F (a)− λC (11)

C =
∑
s

max{D(xs,ms)−D, 0} (12)

B. Decentralized VSBAM-Based Solution for Cloud-Edge Col-
laboration Problem

While the above method centrally determines the division
of models across all sessions, considering the cost of informa-
tion gathering, computation, and synchronization, it is more
efficient to determine the model division for each session in
a decentralized manner. Therefore, we propose a method to
compute the model division for each session using VSBAM.
Fig 2 shows the VSBAM with centralized and decentralized
manner. In the centralized VSBAM, attractors represent the
model division choices for all sessions. In the decentralized
VSBAM, attractors represent the model division choices for
each session (ms,m

′
s). For each session, VSBAM runs on

the terminal connected to the camera. Power consumption is
calculated in the same way as in the centralized approach
by obtaining the consumption of the used edge and cloud.
For latency constraints, only the delay of the session itself is
considered:

Fdd(a) = F (a)− λCs (13)
Cs = max{D(xs,ms)−D, 0} (14)

(a) Centralized

(b) Decentralized

Fig. 2. Centralized VSBAM and Decentralized VSBAM

V. EVALUATION

To verify the effectiveness of the proposed method, we
conduct a simulation-based evaluation.

A. Simulation Environment

Our simulations are based on a model of power consumption
[14], which is based on actual measurements. We assume a
scenario where each session utilizes a common edge node and
a common cloud node. The edge node is assumed to have
a maximum computing resource of 16200 GFLOPS × 45%
(NVidia RTX 3060 Ti), and the cloud node 27770 GFLOPS×
45% (NVidia RTX A5000). The edge node has a fixed con-
sumption of 121.66W and 220W per unit load, while the cloud
node has 121.66W fixed and 250W per unit load. Network
propagation delay is set at 10ms, with an edge-cloud band-
width of 1000Mbps. The network incurs power consumption
proportional to the data size transferred from edge to cloud,
with 0.06W per Mbit. The robustness of the proposed method
against errors is also evaluated by simulation, considering the
case where such a model of power consumption deviates from
the actual power consumption.

For the AI model, it is assumed that each session processes
a total of 7 GFLOPS [15]. The load allocation between edge
and cloud is proportional to the division ratio of the model.
The division ratio at the edge varies from 0 to 100% in
increments of 20%, with the remainder processed by the cloud.
The accuracy of AI ranges from 0 to 0.9 depending on the size
of the model.

AI decisions are made 15 times per second, setting a latency
constraint of 1/15 second. Data has a difficulty level ranging
from 0 to 1, and it is assumed that if the difficulty is below the



AI’s accuracy, a confident decision can be made. The difficulty
level for each data follows a Dirichlet distribution with α =
(10, 10).

B. Solver Settings
To evaluate the performance of solutions derived by the

proposed method, comparisons are made with solutions ob-
tained using a solver. The solver uses Bayesian optimization
via Optuna. The expected value of power consumption is
calculated over 100 timesteps per trial, with a total of 100
trials, thus optimizing over 10,000 timesteps of data.

C. Results
1) Centralized v.s. Decentralized: The proposed method

can solve distributed cloud-edge collaboration problems by
determining the division of the model for each session. Decen-
tralized optimization, compared to centralized optimization,
can reduce the costs of information gathering, computation,
and synchronization, but may potentially lead to lower opti-
mization performance. To evaluate the performance of decen-
tralized optimization in the proposed method, a comparison
with centralized optimization is presented. Figure 3 shows the
timeseries of total power consumption and delay constraint
violations for centralized and decentralized optimization meth-
ods, with the number of sessions set to 10. The figure reveals
that there is no significant difference in performance between
centralized and decentralized optimization. Power consump-
tion is slightly lower in the centralized method, but the differ-
ence is minor. Additionally, violations of delay constraints are
resolved similarly in both methods within a short period. Thus,
it is evident that decentralized control can perform comparably
to centralized control.

2) Robustness to Power Consumption Noise: The proposed
method estimates the power consumption of each node using a
power model, but actual node power consumption may differ
from the model. To evaluate the robustness of the proposed
method to power consumption noise, performance under added
noise to node power consumption is assessed. Specifically,
Gaussian noise is added to the computed power consumption
with a mean of zero and standard deviations of 0%, 10%, 20%,
and 30% of the original power consumption. Since the total
power consumption is around 250W, the standard deviations
are 0, 25, 50, and 75W, respectively.

Figure 4 shows the distribution of total power consumption
and delay constraint violations for various standard deviations
of noise, with the number of sessions set to 10. The number of
delay constraint violations is counted on the timestep, and the
maximum is 100 timesteps. The figure indicates that as noise
increases, violations of delay constraints also increase due to
the deviation of estimated power consumption from actual
values, leading to the selection of solutions that break delay
constraints. However, the increase in violations is gradual,
and even with 30% error, the average number of violations
per session is less than one. Moreover, the impact of noise
on power consumption is minimal. At 30% error, slightly
higher power-consuming solutions are selected, but the degree
is small. These findings demonstrate the robustness of the
proposed method to variations in the power consumption
model.

According to the literature [14], the error between the
power consumption on the model and the actual measured
power consumption is less than 10%. This method is robust
enough to handle larger errors, so there should be no problem
in practical use.

3) Comparison with Solver Results: To verify the effec-
tiveness of the proposed method in minimizing power con-
sumption, a comparison with solutions derived from a solver
is conducted. Figure 5 illustrates the timeseries of power
consumption for varying numbers of sessions. The red line
means the expected value by solver. As the number of sessions
increases, so does the computational load on edge-clouds,
leading to higher overall power consumption. However, ap-
propriate distribution between edge and cloud can significantly
reduce the potential power consumption. In practice, accom-
modating numerous sessions and maintaining a high load rate
is economically advantageous, making the power performance
in scenarios with many sessions crucial. The results from the
figure indicate that as the number of sessions increases, the
proposed method approaches the solver’s solution, particularly
showing equivalent performance with approximately 200 ses-
sions. This suggests that the proposed method can perform
near-optimally in realistic scenarios. Moreover, the proposed
method is computationally more efficient as it optimizes at
every timestep, whereas the solver uses data for 100x100
timesteps for optimization. The computational time required to
obtain one solution was 0.16 seconds for the proposed method,
while the solver required about one hour.

VI. CONCLUSION

In this paper, we presented a novel approach for edge-cloud
cooperation using the VSBAM. By employing the VSBAM,
we were able to make distributed decisions that optimize
power consumption while considering the delay constraints of
each session. Our simulation-based evaluations demonstrated
that the proposed method could achieve power savings as
well as offline optimization solver, especially in scenarios with
numerous sessions. We also show that the proposed method
is robust against power model errors, and that distributed
implementation can achieve nearly the same level of power
consumption reduction as centralized systems.

Future work includes the evaluation with dynamic environ-
ments, such as the arrival of new sessions and the departure
of existing sessions.
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