
Master’s Thesis

Title

Proposal and Evaluation of Robot Navigation Methods

Utilizing Radio Wave Simulators in a Private 5G

Environment

Supervisor

Associate Professor Shin’ichi Arakawa

Author

YU YANG

February 3rd, 2025

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University



Master’s Thesis

Proposal and Evaluation of Robot Navigation Methods Utilizing Radio Wave Simulators

in a Private 5G Environment

YU YANG

Abstract

In recent years, the advancement of wireless communication technologies has pointed

5G as a pivotal element in achieving high - reliability and low-latency communication

systems. Compared to its predecessor, LTE (Long Term Evolution), 5G offers significant

improvements in data transmission rates, latency, network capacity, and spectral efficiency.

Specifically, 5G can achieve peak download speeds up to 20 Gbps, a substantial increase

from LTE’s theoretical maximum of approximately 1 Gbps. Additionally, 5G boasts ultra-

low latency of around 1 millisecond, compared to LTE’s 30-50 milliseconds, which is crucial

for real-time applications such as autonomous driving and remote surgery.

However, the use of higher frequency bands deployed in 5G, such as millimeter waves,

results in limited coverage areas and reduced penetration through obstacles, necessitating a

denser network of base stations . Among the various applications of 5G, autonomous robots

stand out due to their reliance on reliable and continuous network connectivity for effective

operation. In domains such as warehousing, logistics, patrolling, and guided navigation,

the enhanced capabilities of 5G facilitate improved efficiency and safety. For instance,

5G-enabled Automated Guided Vehicles (AGVs) can perform more precise scheduling and

routing, while drones connected via 5G networks can conduct safer inspections and remote

monitoring tasks.

Neverthless, the widespread deployment of autonomous robots faces a sustainability

challenge: ensuring reliable communication to maintain the continuous network connec-

tions necessary for task execution. In urban environments, wireless signals are susceptible

to multipath fading, obstacles, and environmental changes, leading to dynamic fluctua-

tions in received signal strength (RSS), there is still room for improvement in achieving
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precise predictions. Due to resource constraints, large-scale RSS sampling is costly, making

it challenging for robots to plan navigation paths that ensure communication continuity

while efficiently reaching their destinations. Furthermore, 5G high-frequency bands are

more susceptible to multipath effects compared to LTE due to their shorter wavelengths,

higher directionality, and greater sensitivity to environmental changes . Multipath effects

can cause rapid signal fluctuations, thereby affecting data transmission and even leading

to network disconnections. This necessitates more sophisticated signal processing and nav-

igation strategies in 5G high-frequency band communications. This study addresses these

issues by developing a navigation strategy that fully utilizes sensors, including cameras,

to acquire physical environmental information in 5G environments, thereby enhancing the

accuracy of signal strength prediction. This enables robots to maintain reliable commu-

nication links while moving from a start point to a destination. The strategy involves

predicting the spatial distribution of Reference Signal Received Power (RSRP) based on

the information of the traversed space, even with minimal prior data, and designing an

method that integrates RSRP into the navigation process. The importance of this method

lies in its ability to prevent severe mission-critical issues that may arise from communi-

cation interruptions, particularly in applications requiring data exchange or coordination.

Therefore, the method designed in this study improves the operational reliability of robots

by enhancing RSRP prediction and incorporating signal factors into navigation decision-

making.
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1 Introduction

In recent years, advancements in wireless communication technologies have pointed 5G

as a pivotal element in achieving high-reliability and low-latency communication systems.

Compared to its predecessor, LTE (Long Term Evolution), 5G offers significant improve-

ments in data transmission rates, latency, network capacity, and spectral efficiency [1].

Specifically, 5G can achieve peak download speeds of up to 20 Gbps, a substantial increase

from LTE’s theoretical maximum of approximately 1 Gbps. Additionally, 5G boasts ultra-

low latency of around 1 millisecond, compared to LTE’s between 30 to 50 milliseconds,

which is crucial for real-time applications such as autonomous driving and remote surgery.

However, the deployment of 5G presents several challenges. The use of higher fre-

quency bands, such as millimeter waves, results in limited coverage areas and reduced

penetration through obstacles, necessitating a denser network of base stations [2]. Among

the various applications of 5G, autonomous robots stand out due to their reliance on

continuous and reliable network connectivity for effective operation. In domains such as

warehousing, logistics, patrolling, and guided navigation, the enhanced capabilities of 5G

facilitate improved efficiency and safety. For instance, 5G-enabled Automated Guided Ve-

hicles (AGVs) can perform more precise scheduling and routing, while drones connected

via 5G networks can conduct safer inspections and remote monitoring tasks.

Despite these advantages, ensuring reliable communication for autonomous robots re-

mains a critical challenge. In urban environments, radio signals are susceptible to multi-

path fading, obstacles, and environmental variations, leading to dynamic fluctuations in

received signal strength (RSS). Precise prediction of these variations remains challenging.

Large-scale sampling is costly and impractical, making it difficult for robots to plan navi-

gation paths that guarantee communication continuity while optimizing travel efficiency.

Furthermore, the higher-frequency bands used in 5G are more susceptible to multipath ef-

fects compared to LTE due to their shorter wavelengths, higher directionality, and greater

sensitivity to environmental changes [3]. These multipath effects can cause rapid signal

fluctuations, affecting data transmission and even leading to network disconnections. Con-

sequently, more sophisticated signal processing and navigation strategies are required to

maintain connectivity in 5G high-frequency band communications.
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Maintaining network connectivity is crucial for mission-critical tasks that involve infor-

mation collection and real-time data transmission. For example, in remote monitoring or

operations conducted in urban environments, even with relatively reliable 2D maps, robots

may still experience network disconnections during execution. Predicting network connec-

tivity is highly complex since signals attenuate with distance from the transmitter (Tx)

and are further affected when obstacles obstruct the propagation path between the receiver

(Rx) and Tx. When combined with complex fading phenomena, such as multipath fading,

these factors can create isolated no-connection zones [4]. To avoid such regions, human

operators or autonomous decision-making systems must proactively estimate connectivity

conditions along the planned path.

To address this issue, it is essential to provide robots with a stable and reliable net-

work connection during operation. Our method ensures network connectivity by predicting

RSRP values and disconnection probabilities as the Signal coefficient factor , and incorpo-

rating this Signal coefficient factor into the navigation method. In this paper, we propose

a navigation method that integrates both Distance Cost and Signal coefficient factor while

utilizing Building Information Model (BIM). It consists of three key components: First,

we utilize BIM and ray-tracing-based radio simulation software to estimate the RSRP

distribution in the environment. Second, we employ a spatial prediction model based

on GPR to dynamically update the RSRP distribution. Third, we predict the probabil-

ity of disconnection in unexplored areas using a spatial Bayesian method that estimates

the Nakagami-m distribution based on RSRP sampled data. This probability is then in-

tegrated into the navigation method along with distance and RSRP information. The

remainder of this paper is organized as follows. Section 2 reviews existing studies on

the reliable network connection navigation problem. Section 3 formulates the problem

statement, outlining the specific challenges we aim to tackle. Section 4 presents the imple-

mentation details of our proposed method. Section 5 describes the experimental setup and

discusses the results obtained. Finally, Section 6 summarizes the findings and concludes

the paper.
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2 Related Work

Significant efforts have been made to address the issue that maintain robust wireless com-

munication between mobile robots and base stations[5] [6] .Some researchers have focused

on Communication-Aware Motion (or Path) Planning (CAMP), which simultaneously op-

timizes movement and communication constraints to find and execute the optimal path

to the destination [7] .Others proves that reliable wireless connectivity is vital for mobile

robot control and data communication

[8].[9]

Yan et al. use an intelligent AUV system integrates binocular cameras, sonars, and

acoustic modems for obstacle avoidance and communication. A depth deterministic policy

gradient (DDPG) method optimizes motion planning by balancing communication quality

and stability, outperforming disk-model and distance-based methods. Simulations and

experiments validate its effectiveness in complex underwater environments. [10] However,

this method still lacks adaptability to dynamic environments.

The Kalman filter method has also been used for rapid prediction of signal strength

along paths. Compared to methods like Gaussian process regression, the Kalman filter

makes fewer assumptions about the environment, offering better adaptability in dynamic

scenarios and higher computational efficiency [11]. Nevertheless, the Kalman filter can

only predict the signal strength at the next point, unabling to assess wireless connec-

tivity quality across the environment. The aforementioned prediction studies address

small-scale fading by modeling it with longer time windows, such as applying Spatial

Moving Average Filters to average RSS observation data. Even so, they overlook the

rapid fluctuations of small-scale fading within short time frames, which may lead to brief

disconnections—undesirable conditions.

However, in [12], the RSS prediction is solely based on the observed RSS data and

does not effectively leverage the geometric information inherent in the environment. This

limitation prevents the method from fully exploiting all available spatial cues that could

further enhance signal prediction accuracy and robustness.

Apart from the aforementioned issues,navigation is also an essential task in the field

of mobile robotics.When a robot performs navigation tasks that require maintaining net-
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work connection under the circumstance of global navigation, the prior knowledge of the

environment should be available.[13] However, in practical situations ,it is challenging to

obtain all radio information within the map in advance. And in the local navigation,

though the robot can decide or control its motion and orientation autonomously using

equipped sensors [13],radio wave propagation is closely related to the geometric informa-

tion of the environment, and relying solely on observed data for prediction has certain

limitations. Hence,it is becoming increasingly important to achieve network connection

navigation with minimal prior information and more accurate model. In our paper, we

refer to the problem of planning a path that both minimizes the travel distance and mini-

mizes the risk of communication interruption. Although in some references this problem is

referred to as the ”communication-aware path planning problem”, we have chosen to use

the term ”reliable network connection navigation” problem throughout this paper for con-

sistency. For the remainder of this paper, we adopt the unified terminology of the reliable

network connection navigation problem. This decision is made to maintain consistency

in our discussion and avoid potential confusion. Overall,It can be seen that maintaining

a stable signal connection while achieving accurate real-time route planning in complex

environments is a challenging problem. Therefore, the purpose of this study is to pro-

pose a method that considers not only Signal coefficient factor but also Distance Cost in

navigation using mall-area private 5G systems, a.k.a, Local 5G systems in Japan. Signal

coefficient factor of static signal value is predicted by using 3D model, and signal uncer-

tainty is calculated by using spatial Bayesian method and empirical model (Nakagami-m

distribution). In order to achieve reliable network connection navigation with minimal

prior information, the following methods are considered: using detailed parameters of

Local 5G access point (AP) locations and incorporating geometric information from an

imprecise BIM as input, which includes shape and material information. we will use the

the available BIM and ray-tracing simulation to estimate the RSRP by simulating sig-

nal reflection and refraction based on buildings and obstacles in the BIM. Ray-tracing

simulation does not consider signal fluctuation caused by dynamic obstacles, which may

cause the robot to network disconnection. To avoid the network disconnection cause by

signal fluctuation , we calculate the probability that the RSRP falls below the threshold

that leads to a disconnect, we use a spatial Bayesian method to estimate the necessary
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parameters of disconnect calculation. In our method, we estimate the Nakagami-m dis-

tribution parameters that characterize the shape and average power of the sampled data

by incorporating both the observed RSRP data and the spatial context provided by the

environment. Once these parameters are estimated, these parameters are used to compute

the likelihood that RSRP will drop below the disconnect threshold, thus quantifying the

probability of disconnection at a given location. Finally, we combine RSRP, the probabil-

ity of disconnection, and the Distance Cost to target point to design a navigation method

that maintains reliable network connectivity.
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3 Problem Formulation for Reliable Network Connection

Navigation in 5G-Enabled Autonomous Robots

3.1 Problem Background

In our research context, the robot is deployed to perform monitoring and data collection

tasks in a 5G environment with the primary target of ensuring reliable network connec-

tivity throughout the mission. The start point S and the target point T are set by the

task planner according to the specific application (e.g., delivery, inspection, etc.).

The start point S and target point T are typically predetermined by the task planner

or operator based on the mission requirements. For example, in inspection or delivery

tasks, the task planner selects appropriate start and target points to ensure that the

robot can successfully complete the mission. In this work, the autonomous navigation

robot is deployed in a 5G network environment, and its main tasks include real-time data

collection, environmental monitoring, and remote control. To accomplish these tasks, the

robot must maintain a stable network connection throughout its navigation so that it can

receive remote commands and transmit collected data.

The robot is required to navigate from the start point S to the target point T in a two-

dimensional workspace. In the path calculation, it is necessary not only to minimize the

Distance Cost but also to account for the risk of network disconnection so that the signal

strength requirements are satisfied along the entire path. After reaching the target point

T , the robot will perform subsequent tasks such as data collection, on-site inspection, or

environmental monitoring. Therefore, maintaining high-quality network connection during

navigation is essential for mission success. Although the robot is capable of autonomous

navigation, tasks such as real-time data transmission, remote monitoring, and multi-robot

collaboration in a 5G environment require the system to maintain a stable network con-

nection at all times. Thus, in navigation, both the minimization of the Distance Cost and

the reduction of the risk ofnetwork disconnection must be considered to ensure mission

continuity and safety.
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3.2 Environmental Assumptions

3.2.1 Workspace Definition

The robot operates in a two-dimensional plane embedded in a three-dimensional space

that contains static obstacles, denoted by O. In this environment, static obstacles are

present, and initially the system is provided with partial prior information regarding the

approximate points and outer contours of these obstacles, as well as the coordinates of

the AP. However, details such as the precise material properties and the heights of the

obstacles are not known. We will use the RSRP, which offers a more robust and consistent

measure of channel conditions, as the indicator of signal strength.

3.2.2 Robot Kinematic Constraints

To ensure the stability and safety of the robot during motion, its speed must be con-

strained. The specified maximum speed, Vmax, reflects both the physical capabilities of

the robot platform and the mission’s safety requirements. Regarding turning angles, we

assume that the robot can stop and perform an in-place rotation when changing its head-

ing; therefore, no constraint is imposed on the turning angle in our study. We assume that

the path traversed by the robot during the mission is given by

P = [S = (x0, y0), (x1, y1), (x2, y2), . . . , (xN−1, yN−1), (xN , yN ) = T ],

which comprises a start point S, a target point T , and N − 2 intermediate points. For

any point along the path, we denote its coordinates as (xi, yi) for i = 0, 1, . . . , N , and the

velocity vector at point (xi, yi) is denoted by v(xi,yi). Note that N is not a constant value

but it varies dependent on the path planning. To ensure mission safety and equipment

integrity, the robot must avoid obstacles; that is, none of the points along the path may

lie within an obstacle.

In summary, the robot motion is constrained by:

∥v(xi,yi)∥ ≤ Vmax (Maximum velocity),

(xi, yi) /∈ O ∀ (xi, yi) ∈ P (Obstacle avoidance).
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Start Point S
Target Point T
Path between two consecutive points

Figure 1: In a 2D grid map, the start point S, target point T , and the path between two

consecutive points are shown. Blue dot: start point S; red dot: target point T ; green

arrow: path between two consecutive points.

3.3 Optimization Problem

3.3.1 Decision Variables

A path consists of a sequence of consecutive segments. By summing the lengths of all the

segments, the total length of the path can be determined. We assume that the path

P = [S = (x0, y0), (x1, y1), (x2, y2), . . . , (xN−1, yN−1), (xN , yN ) = T ]

comprises a start point S, a target point T , and n intermediate points, as illustrated in

Fig. 1. Here, n represents the number of intermediate or rotation points (RPs). Thus, a

segment of the path is formed by two consecutive points.

14



3.3.2 Objective Function

The safety and efficiency of the robot during its mission are quantified by a cost function

c(P ), where P = [S = (x0, y0), (x1, y1), (x2, y2), . . . , (xN−1, yN−1), (xN , yN ) = T ] repre-

sents the sequence of path points traversed by the robot during the mission. Specifically,

the mission cost is divided into two components: Distance Cost and Signal coefficient factor

. The Euclidean distance between two consecutive points, ∥(xi+1, yi+1) − (xi, yi)∥, rep-

resents the estimated distance from (xi, yi) to (xi+1, yi+1), where (xi, yi) and (xi+1, yi+1)

represent two consecutive points of the path P . The Signal coefficient factor for moving

from point (xi, yi) to the next point (xi+1, yi+1) is characterized by the average mea-

sured RSRP rsrp(xi+1,yi+1), and the probability of network disconnection at that point,

ρ(xi+1, yi+1). For each segment, both the Distance Cost and the Signal coefficient fac-

tor are considered, and the total cost c(P ) is obtained by summing the costs between

all consecutive points along the path. Here, λ1 and λ2 are the weighting coefficients for

rsrp(xi+1,yi+1) and ρ(xi+1, yi+1), respectively, which balance their influence on the naviga-

tion in different scenarios. The objective is to minimize the hybrid cost c(P ) that combines

both the Distance Cost and the Signal coefficient factor :

min
P

c(P ) =
N−1∑
i=0

∥(xi+1, yi+1)− (xi, yi)∥︸ ︷︷ ︸
Distance Cost

·
(
λ1rsrp(xi+1,yi+1) + λ2ρ(xi+1, yi+1)

)︸ ︷︷ ︸
Signal coefficient factor

. (1)

3.4 Complete Problem Statement

In this paper, we model the autonomous navigation task as an optimization problem. To

ensure reliable data transmission during the mission, the average measured RSRP at every

point (xi, yi) ∈ P along the path must satisfy

rsrp(xi,yi) ≥ −120 dBm.

At the same time, to maintain network connectivity throughout the mission, the proba-

bility of network disconnection ρ(xi, yi) at each point should be as low as possible, while

the Distance Cost is minimized under good signal conditions. The objective function inte-

grates both the Distance Cost and the risk of network disconnectiom. The reliable network
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connection navigation problem is formally expressed as:

min
P

c(P ) =

N−1∑
i=0

∥(xi+1, yi+1)− (xi, yi)∥
(
λ1rsrp(xi+1,yi+1) + λ2ρ(xi+1, yi+1)

)
,

Subject to (xi, yi) /∈ O, ∀ (xi, yi) ∈ P,

∥v(xi,yi)∥ ≤ Vmax, ∀ (xi, yi) ∈ P.
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4 Signal coefficient factor Prediction and Distance-Based

Integration Navigation Method

4.1 System Overview

The proposed system is comprised of three core components that work together to achieve

reliable signal connected navigation with minimal prior information. First, the ray-tracing

simulation leverages BIM to generate estimates of the RSRP across the environment. This

RSRP serves as the foundation for further refinement.

Secondly, the prediction module employs GPR to continuously update the RSRP in the

environment based on real-time measurements, enabling the system to adapt to dynamic

changes in the signal environment. At the same time, we use the observed RSRP data and

a spatial Bayesian method to predict the disconnection probability within the environment.

Finally, the navigation module integrates the predicted RSRP, the predicted disconnection

probability, and the Distance Cost to plan a path that maintains stable signal connectivity.

Our method is designed to enable robots to navigate autonomously in radio environments

that are either unknown or only partially known, while ensuring that the signal strength

meets threshold requirements. Initially, the robot obtains preliminary estimates of the

signal strength through ray-tracing simulations and employs Gaussian Process Regression

(GPR) to update the channel state in real time. After each movement, The robot measures

the signal strength at its current location and calculates the Signal coefficient factor for

reaching the next point based on both the predicted rsrp and the disconnection probability.

Subsequently, the robot replans the optimal path from its current point to the target,

selecting a route that not only minimizes the travel distance but also mitigates the risk of

signal disconnection.

When the signal strength along the new path falls below the preset threshold, the

robot does not proceed further. Instead, it backtracks to the most recent location where

the RSRP was still acceptable and recalculates the path, thereby ensuring network con-

nectivity throughout the navigation process.

This method enables the robot to dynamically adapt to changes in the signal environ-

ment while minimizing the overall path cost. Even without detailed radio maps at the
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outset, the robot can progressively learn and optimize its path as it navigates.

The pseudocode in 1 also describes the process of the navigation method. Here,

(xc, yc), c = 0, 1 . . . , N represents the current point on the path P , P denotes the path

from the start point to the current point, and rsrp(xc,yc) represents the measured average

RSRP at point (xc, yc).

Then, we compute the cost of reaching the next point using the cost function c(P ). If

the RSRP at the next point is above the threshold τ = −140 dBm, the robot proceeds to

that point; otherwise, it backtracks to the most recent safe point.

Algorithm 1 Integration of Signal coefficient factor and Distance Cost in Navigation

1: Initialize Path P ← [(x0, y0) = S]

2: Update Mrsrp using ray-tracing simulation and BIM

3: while (xc, yc) ̸= T do

4: Execute motion to (xc+1, yc+1)

5: Measure rsrp(xc,yc), update Path P

6: Update Mrsrp using the GPR model based on P

7: Select the next point (xc+2, yc+2) by minimizing the hybrid cost c(P )

8: if rsrp(xc+1,yc+1) < τ = −140 dBm then

9: Rollback to the most recent safe point (xc, yc) and recalculate the path

10: else

11: c← c+ 1

12: end if

13: end while

We will use the RSRP measurements obtained by the robot and GPR to predict large-

scale and small-scale fading in unexplored areas, thereby obtaining more accurate Signal

coefficient factor estimates.

In this section, we provide a detailed explanation of how to predict large-scale and

small-scale fading. First, we describe how to denoise sampled RSRP data, which helps

stabilize measurement variations and improve data reliability. Then, we introduce the

concepts of large-scale and small-scale fading based on the RSS model, which is defined by

path loss, shadowing, and multipath effects. Next, we demonstrate how to use measured

18



RSRP and GPR to predict large-scale fading, enabling more accurate RSRP estimations.

Finally, we employ a spatial Bayesian method along with denoised RSRP values processed

by the EWMA filter to predict small-scale fading and quantify the probability of network

disconnection along the path.

4.1.1 Measured Data Processing and Denoising

Typically, RSRP measurements (in dBm) from wireless adapters are susceptible to noise

and temporal fluctuations in addition to multipath fading. This noise can be mitigated

by applying an Exponentially Weighted Moving Average (EWMA) filter [14].

In our method, we assume that the robot obtains 10 RSRP sampled datas each time it

reaches a point. For any visited point in the set D = {(xi, yi)}N−1
i=0 , each point (xi, yi), i =

0, 1, . . . , N − 1 receives 10 RSRP samples {rsrp(j)(xi,yi)
}10j=1, which are processed using the

EWMA filter:

rsrp
(j)
(xi,yi)

= rsrp
(j−1)
(xi,yi)

+ α(rsrp
(j)
(xi,yi)

− rsrp
(j−1)
(xi,yi)

), (2)

where rsrp
(j)
(xi,yi)

represents the jth RSRP sampled data at point (xi, yi), and α is the

smoothing factor.

To minimize the noise present in {rsrp(j)(xi,yi)
}10j=1, we apply the EWMA filter to smooth

the samples RSRP data, thereby enhancing data stability and reliability.

4.1.2 Radio Signal Strength Model

When a radio signal propagates from a source to a destination, its strength attenuation

depends on environmental factors such as distance (path loss), objects in the environment

(shadowing), and spatio-temporal dynamics (multipath fading) [14]. A frequently used

model to represent the RSS is given by [15]:

RSS(d, t) = RSSd0 − 10η log10

(
d

d0

)
︸ ︷︷ ︸

Path Loss

− Ψ(d)︸ ︷︷ ︸
Shadowing

− Ω(d, t)︸ ︷︷ ︸
Multipath

, (3)

where RSSd0 is the RSS at a reference distance d0 (usually 1m), which depends on the

transmit power, antenna gain, and the radio frequency used. η is the path loss exponent,
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a propagation constant of the given environment. d = ∥(x, y)− (xBS, yBS)∥ is the distance

of the receiver (at point (x, y)) from the radio source (at point (xBS, yBS)). Ψ ∼ N (0, σ) is

a Gaussian random variable typically used to represent shadowing, while Ω is a Nakagami-

m distributed variable representing multipath fading.Path loss and shadowing belong to

large-scale fading.Large-scale fading refers to the slow attenuation of signal strength due

to increased propagation distance and large obstacles (such as buildings, hills, terrain,

etc.) that block or reflect the signal during propagation. Multipath Ω(d, t) belongs to

small-scale fading. Small-scale fading refers to the rapid fluctuations in received signal

strength over short time periods or small areas due to multipath propagation and channel

variations. We focus on predicting and utilizing the RSRP rather than the RSS. RSS

represents the total received signal power, while RSRP considers only the power from the

reference base station. The key reason for this choice is that RSRP specifically measures

the power of the reference signal transmitted by the base station, providing a more stable

and accurate indicator of the radio channel conditions. In contrast, RSS typically includes

the aggregate power of all received signals, which may encompass interference and noise

components, leading to greater variability. Given that modern cellular networks (e.g., LTE

and 5G) rely on RSRP for tasks such as cell selection and handover decisions, employing

RSRP allows our model to better reflect the operational metrics used in these networks.

RSRP follows similar propagation characteristics to RSS, and we quantify the signal

along the path from the perspectives of large-scale fading and small-scale fading.

In our method, the robot maintains an RSRP map, denoted as Mrsrp, where each

unvisited location (x∗, y∗) is associated with a predicted RSRP value rsrp′(x∗,y∗)
∈ Mrsrp.

The value rsrp′(x∗,y∗)
is computed using the proposed prediction method. Additionally,

our method incorporates real-time sampled data. Whenever sampled data at an unvisited

location (x∗, y∗) is obtained, we compute the measured average and update rsrp′(x∗,y∗)
to

reflect the measured mean.

First, we use ray-tracing simulation and prior BIM data to estimate rsrp′(x∗,y∗)
for each

unvisited location (x∗, y∗). In simple terms, ray-tracing simulation treats radio waves as

numerous energy-carrying rays. These rays are traced to simulate radio wave interactions

with obstacles, including reflection, refraction, and diffraction. The total energy of all rays

reaching the Rx is then computed to obtain the predicted RSRP value.
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In ray-tracing simulations, path loss and shadowing are accounted for, but multipath

effects caused by dynamic obstacles cannot be estimated.

Since ray-tracing simulations cannot reflect the temporal variations in large-scale fad-

ing in real time (e.g., those induced by weather factors such as temperature and humidity),

we adopt a prediction method based on sampled data and GPR to compensate for this

limitation. Specifically, we first compute the difference between the measured average

RSRP rsrp(xi,yi) after arrival and the predicted RSRP rsrp′(xi,yi)
before arrival, where

rsrp(xi,yi) is computed as the mean of the ten measured RSRP values {rsrp(j)(xi,yi)
}10j=1.

This difference is then used to construct a GPR model to update the difference map

∆Mrsrp, which represents the difference between the measured and predicted values

∆RSRP at each location in the map.

Then, for an unvisited point (x∗, y∗), the updated ∆RSRP(x∗,y∗) values from ∆Mrsrp

are used to correct the predicted RSRP values, thereby obtaining the updated rsrp′(x∗,y∗)
.

Throughout the entire process, all subsequent data updates are applied to rsrp′(x,y).

That is, whenever new sampled data become available, we employ the same prediction

mechanism to update the values of rsrp′(x,y) in Mrsrp, ensuring that the map accurately

and in real time reflects the current average power distribution and large-scale fading

conditions in the area. Additionally, because ray-tracing simulations do not simulate

small-scale fading effects [15], we estimate the signal fluctuations caused by multipath

effects by predicting the parameters that determine the empirical distribution of small-

scale fading. We also use GPR to predict small-scale fading at unvisited points. The

specific implementation details will be described below.

4.1.3 Large-Scale Fading Prediction (Difference-Based Prediction)

Large-scale fading includes path loss and shadowing. Shadowing effects are due to the

presence of large obstacles in the signal propagation path, leading to signal blockage or

attenuation. This type of attenuation changes very slowly over time, but the daily level of

attenuation and the attenuation at different locations can vary. For example, at the same

location, attenuation on a rainy day differs from a sunny day; similarly, attenuation in a

LOS path differs from a NLOS path. Figure 2 shows a radio attenuation map generated

by a radio propagation simulation tool. The color scale from purple to red represents
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Figure 2: Large-scale fading. The colors from purple to red indicate attenuation levels

from high to low.

attenuation levels from high to low. It can be observed that there are differences in the

colors among the various regions in the Figure2, which indicates that the degree of fading

varies across these areas. Since large-scale fading directly determines the measured average

RSRP at each location, and our method aims to obtain more accurate RSRP predictions

during navigation, it is necessary to model the large-scale fading for every potentially

visitable point on the map.

When performing large-scale fading prediction, for any point on the visited points

before reaching the target T , denoted as D = [(x0, y0), (x1, y1), . . . , (xN−1, yN−1)],we have

obtained the differences ∆RSRP(xi,yi) between the measured average RSRP rsrp(xi,yi) after

arrival and the predicted RSRP at (xi, yi) before arrival, denoted as rsrp′(xi,yi)
. Thus, the

differences ∆RSRP(xi,yi) values are given by:
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∆RSRP(xi,yi) = rsrp′(xi,yi)
− rsrp(xi,yi). (4)

These difference data points form a set of visited point D used to establish a GPR

model to update the difference map ∆Mrsrp. GPR is a non-parametric method for mod-

eling a distribution over functions. Its fundamental assumption is that the function values

at any finite set of points follow a joint Gaussian distribution. Since radio wave propa-

gation follows a joint Gaussian distribution, we adopt GPR as a key component of our

prediction method.

Suppose we have the difference map ∆Mrsrp, which contains the difference values of

visited points and the predicted difference values of unvisited points. ∆Mrsrp is obtained

from the set of visited pointD by calculating the difference between each averaged sampled

data and its predicted value.The set of differences between the sampled averages and

predicted values at each point in D as:

f = [∆RSRP(x0,y0),∆RSRP(x1,y1), . . . ,∆RSRP(xN−1,yN−1)]
T .

For any unvisited point (x∗, y∗), the GPR assumes that the function value at (x∗, y∗)

is jointly Gaussian with the set of visited point D. We choose the Radial Basis Func-

tion (RBF) kernel function to capture the correlation between points in D. The RBF

kernel function defines the similarity between two spatial points (x, y) and (x′, y′), which

influences the covariance structure in GPR. The kernel function is given by:

k((x, y), (x′, y′)) = σ2
f exp

(
−∥(x, y)− (x′, y′)∥2

2l2

)
, (5)

where l is the length-scale parameter, which controls how quickly the correlation de-

cays with distance, and σ2
f is the signal variance. exp represents the exponential func-

tion. Its role is to convert the distance between two points (x, y) and (x′, y′) into a

weight or similarity value between 0 and 1, thereby computing their covariance. The

higher the correlation between two spatial points (x, y) and (x′, y′), the closer the ex-

ponential function component in Equation 5 is to 1, meaning that k((x, y), (x′, y′)) will

output a value close to σ2
f . In our method, the covariance matrix between points in
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D = {(x0, y0), (x1, y1), . . . , (xN−1, yN−1)} is used to compute the correlation between any

of the visited points, given by:

K = [k((xi, yi), (xj , yj))]
N−1
i,j=0. (6)

We use the RBF kernel in Equation 6 to compute the correlation between the unvisited

point (x∗, y∗) and any of the visited points, and store the results in the covariance matrix

k∗. The covariance matrix K of the visited locations and the set of differences f at the

visited points are then used to calculate ∆RSRP(x∗,y∗) and its variance Var[∆RSRP(x∗,y∗)]

at the unvisited point (x∗, y∗):

k∗ = [k((x∗, y∗), (x0, y0)),

k((x∗, y∗), (x1, y1)), . . . , k((x∗, y∗), (xN−1, yN−1))]
T ,

∆RSRP(x∗,y∗) = kT
∗ K

−1f ,

Var[∆RSRP(x∗,y∗)] = k((x∗, y∗), (x∗, y∗))− kT
∗ K

−1k∗.

(7)

Using the GPR prediction, we obtain the predicted difference ∆RSRP(x∗,y∗) for areas

not yet visited. Based on this, we update the RSRP map Mrsrp with the data at this

point, rsrp′(x∗,y∗)
:

rsrp′(x∗,y∗)
= rsrp′(x∗,y∗)

−∆RSRP(x∗,y∗). (8)

Thus, we obtain a large-scale fading map that more closely approximates the true

average RSRP value. During navigation, we use rsrp′(x∗,y∗)
at unvisited locations in Mrsrp

to plan the path. Therefore, an accurate estimate of rsrp′(x∗,y∗)
is directly related to

maintaining network connection.

4.1.4 Small-Scale Fading Prediction (Nakagami-m Parameter Prediction)

Small-scale fading refers to the rapid fluctuations in received signal strength over short time

periods or small areas due to multipath propagation and channel variations. Unlike large-

scale fading (such as path loss and shadowing), small-scale fading is caused by reflection,

diffraction, and scattering in the environment, resulting in signals arriving at the receiver
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Figure 3: Delay spread: the difference in signal propagation times of different paths.

Colors from purple to red indicate delay levels from high to low.

via multiple paths. Figure 3 shows the delay spread. Areas with high delay spread typically

indicate a more complex multipath propagation environment and are more susceptible to

fast fading. One can see that the delay spread at each point differs, and even adjacent

points can have very large differences. This may result in different network fluctuations at

adjacent locations, thereby increasing the risk of disconnection. In order to ensure that the

robot maintains a safer network quality at all potentially visitable points, it is necessary

to model small-scale fading.

For small-scale fading prediction, we need to calculate the probability of disconnection

at each unvisited location (x∗, y∗) to quantify small-scale fading. We choose the Nakagami-

m distribution to model signal fluctuations. The sampled data obtained at visited locations

in D = [(x0, y0), (x1, y1), . . . , (xN−1, yN−1)] can be used to fit the Nakagami-m distribution
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parameters at the unvisited point (x∗, y∗), including the shape parameter m and the

average power Ω.

We apply a spatial Bayesian method to predict m. Based on the set of 10 sampled

RSRP datas at each visited point (xi, yi)
N−1
i=0 in D, denoted as

R(xi, yi) = {rsrp(1)(xi,yi)
, rsrp

(2)
(xi,yi)

, . . . , rsrp
(10)
(xi,yi)

},

we use Bayesian inference and the Maximum A Posteriori (MAP) method to fit the

Nakagami-m distribution parameter m. Then, we apply GPR to predict m(x∗,y∗) at un-

visited locations (x∗, y∗) using the fitted values of m at visited locations (xi, yi), denoted

as m = [m(x0,y0),m(x1,y1), . . . ,m(xN−1,yN−1)].

To estimate the shape parameter m in the Nakagami-m distribution at each point

(xi, yi) inD, we utilize Bayesian inference based on the RSRP sampled datas {rsrp(j)(xi,yi)
}10j=1.

Specifically, the 10 RSRP samples at each location are first converted into the correspond-

ing received signal amplitudes {r(j)(xi,yi)
}10j=1. These values are then used to compute the

likelihood function under the Nakagami-m model:

r(xi,yi) =


√

10
rsrp

(j)
(xi,yi)

10 | rsrp(j)(xi,yi)
∈ R(xi, yi)

 ,

p(R(xi, yi);m(xi,yi),Ω) =
10∏
j=1

2m
m(xi,yi)

(xi,yi)

Γ(m(xi,yi)) Ω
m(xi,yi)

r
(j)
(xi,yi)

2m(xi,yi)
−1

exp
(
−
m(xi,yi)

Ω
(r

(j)
(xi,yi)

)2
)
,

(9)

where Γ(m(xi, yi)) represents the value of the Gamma function evaluated at m(xi, yi).

It is used to adjust the amplitude of the entire distribution so that the total probability

over all possible signal amplitudes is equal to 1. Ω represents the scale parameter, which

corresponds to the average power of the signal, i.e., Ω = E[r2], where r is the received

signal amplitude.

The amplitudes of the 10 RSRP samples {r(j)(xi,yi)
}10j=1 measured at the visited locations

(xi, yi)
N−1
i=0 conform to the posterior distribution at these points. Therefore, we first com-

pute the overall likelihood function L(m), which represents the joint probability of these

samples given a specific value of the parameter m. In other words, L(m) measures how
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well the parameter m fits these sampled data, serving as the basis for subsequent Bayesian

estimation and MAP estimation.

Assuming that the prior distribution of m(xi,yi) follows a Gamma distribution, we

update the prior distribution using a Bayesian method. Finally, we perform MAP estima-

tion to maximize the likelihood of L(m) under the posterior distribution. This allows us

to obtain a posterior distribution that incorporates as many of the observed amplitudes

{r(j)(xi,yi)
}10j=1 as possible. Consequently, we obtain the shape parameter m at the visited

locations (xi, yi)
N
i=0 as the set m = [m(x0,y0),m(x1,y1), . . . ,m(xN ,yN )]. The specific formula

is as follows:

L(m(xi,yi)) =
10∏
j=1

p(r
(j)
(xi,yi)

;m(xi,yi),Ω(xi,yi)), (10)

p(m(xi,yi)) =
βα

Γ(α)
m(xi,yi)

α−1e−βm(xi,yi) , m(xi,yi) > 0, (11)

p(m(xi,yi)|D) ∝ L(m(xi,yi)) p(m(xi,yi)), (12)

mMAP = arg max
m(xi,yi)

(
L(m(xi,yi)) p(m(xi,yi))

)
. (13)

Similarly, we apply GPR to the shape parameters m(xi,yi) obtained at visited locations

(xi, yi) to predict the m value at an unvisited location (x∗, y∗). Given the fitted shape

parameters at visited locations, denoted as m = [m(x0,y0),m(x1,y1), . . . ,m(xN−1,yN−1)], we

perform a spatial interpolation prediction for m using GPR:

m(x∗,y∗) = kT
∗ K

−1m, (14)

Var[m(x∗,y∗)] = k((x∗, y∗), (x∗, y∗))− kT
∗ K

−1k∗, (15)

where m = [m(x0,y0),m(x1,y1), . . . ,m(xN−1,yN−1)]
T . Through this process, we do not need

to directly measure the Nakagami-m parameters in unvisited areas. Instead, we can rea-

sonably predict m for unknown regions based on the known parameters and the Euclidean

distance relationships between coordinates.

Next, we use the predicted m(x∗,y∗) at the unvisited location (x∗, y∗) along with the

predicted value rsrp′(x∗,y∗)
to estimate the probability of disconnection at that location.
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First, we model the Nakagami-m distribution at (x∗, y∗) using m(x∗,y∗) and the predicted

rsrp′(x∗,y∗)
. Then, we compute the probability that the rsrp′(x∗,y∗)

falls below the threshold

- 140dBm using the cumulative distribution function (CDF) of the Nakagami-m distri-

bution. Since the CDF requires power values in linear scale, we convert the predicted

RSRP rsrp′(x∗,y∗)
from dBm to Watts, denoted as r′(x∗,y∗)

, also convert the threshold τ =

- 140 dBm from dBm to Watts, denoted as rth:

r′(x∗,y∗)
= 10

rsrp′
(x∗,y∗)

−30

10 (Watt),

ρ(x∗, y∗) = FNakagami

(
τ ; m(x∗,y∗), r

′
(x∗,y∗)

)

=

γ
(
m(x∗,y∗),

m(x∗,y∗)

r′(x∗,y∗)

r2th

)
Γ
(
m(x∗,y∗)

) .

(16)

Finally, for the unvisited location (x∗, y∗), we have updated the values of rsrp′(x∗,y∗)
in

Mrsrp and the predicted m(x∗,y∗). Thus, we can construct a Nakagami-m distribution to

predict the probability that RSRP falls below the threshold τ = −140 dBm, denoted as

ρ(x∗, y∗).

4.2 Navigation Method Integrating Signal coefficient factor and Dis-

tance Cost

We utilize Signal coefficient factor derived from ray-tracing simulations, GPR, and spatial

Bayesian inference, combined with Distance Cost, to plan and execute a path to target T .

In this section, we first introduce the cost function used in our method, which integrates

both Signal coefficient factor and Distance Cost. This cost function normalizes the RSRP

cost and disconnection probability within the Signal coefficient factor component, allowing

these two costs to be adjusted based on scenario-specific weighting coefficients. This

flexibility enables adaptation to different requirements.

Furthermore, for RSRP cost, we divide the RSRP into two regions. Compared to

a linear division, our method makes the RSRP cost more sensitive to values below the

threshold while remaining less responsive to values above the threshold.

Finally, we explain how, in cases where the robot navigates into a region with RSRP

below the threshold due to inaccurate predictions, the GPR update process and path
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recalculation procedure are performed to adaptively correct the navigation.

4.2.1 Cost Function

In our method, the overall path cost is minimized by minimizing the cost between each

point. Specifically, at each step the method selects the next point (xi+1, yi+1) such that the

incremental cost c((xi, yi), (xi+1, yi+1)) is minimized, ensuring that the cumulative cost of

the path to reach the target T is as low as possible. the optimal path {(xi, yi)}N−1
i=0 from

start point S to target point T is computed by minimizing the total cost c(S, T ), which is

expressed as the sum of the costs between each pair of consecutive points:

c(S, T ) =
N−1∑
i=0

c((xi, yi), (xi+1, yi+1)). (17)

The cost function c : C × C → R is defined to combine both disconnection probability

predictions and RSRP predictions. Specifically, it is given by:

c((xi, yi), (xi+1, yi+1)) = (d((xi, yi), (xi+1, yi+1)) + h(xi+1, yi+1)) ·

(λ1π(xi+1, yi+1) + λ2ρ(xi+1, yi+1)) .
(18)

π(xi, yi) =


ϵ+ 0.2

(
−70− rsrp′(xi,yi)

50

)
, if rsrp′(xi,yi)

≥ −120,

0.2 + 0.8

(
−120− rsrp′(xi,yi)

130

)
, otherwise.

(19)

ρ(xi, yi) = FNakagami(10
τ−30
10 ;m(xi,yi), 10

rsrp′
(xi,yi)

−30

10 ). (20)

The symbols used in the cost function are defined in Table 1. The equation18 combines the

distance metric and the heuristic function, which depends on the distance to the target. The

term rsrp′(xi+1,yi+1)
represents the predicted RSRP value at the next point (xi+1, yi+1), calculated

through ray-tracing simulations and GPR. In wireless communication systems the RSRP value cov-

ers multiple levels: in close proximity to the base station or in favorable environmental conditions,

the RSRP can reach around - 70 dBm, indicating strong signal quality. When the signal atten-

uates to approximately - 120 dBm, the device may be at the edge of network coverage, resulting

in degraded connection quality. If the RSRP falls below - 140 dBm, the signal becomes extremely

weak, making it difficult for the device to maintain a reliable connection, potentially leading to

disconnection. An RSRP of - 250 dBm will inevitably result in a complete loss of connection.

So We assume that rsrp′(xi,yi)
ranges within [ - 70dBm, - 250dBm]. To ensure that the influence

of the RSRP cost π(xi, yi) and the disconnection probability ρ(xi, yi) on path selection is balanced,
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Table 1: Definition of variables in the cost function.

Symbol Description

d((xi, yi), (xi+1, yi+1)) Euclidean distance between consecutive points.

h(xi+1, yi+1) Heuristic function estimating the remaining distance to the tar-

get.

π(xi, yi) Normalized RSRP cost function.

ρ(xi, yi) Probability that rsrp′(xi,yi)
falls below the threshold τ =

−140 dBm, computed via the Nakagami-m CDF.

rsrp′(xi,yi)
Predicted RSRP value at (xi+1, yi+1) obtained from our pre-

diction method.

λ1, λ2 ∈ R+ Weighting factors for RSRP cost and disconnection probability.

τ = −140 dBm Critical RSRP threshold for connection loss.

ϵ = 10−6 A small value to prevent π(xi, yi) from being zero.

we normalize both terms. Since ρ(xi, yi) ∈ [0, 1] is already normalized, we apply a normalization

process to π(xi, yi).

The function π(xi, yi) employs a piecewise linear mapping that divides the RSRP values into

two regions: for RSRP values greater than or equal to - 120 dBm (i.e., the stronger signal region),

a smoother mapping is applied, where each 1 dBm change corresponds to a small increment in

π(xi, yi), with a range of [ϵ, 0.2 + ϵ]. For RSRP values below - 120 dBm (i.e., the weaker signal

region), a steeper mapping is used, where each 1 dBm decrease results in a significant increase in

π(xi, yi), with a range of (0.2 + ϵ, 1 + ϵ]. This design ensures that when the signal is weak, cost

changes are more sensitive, making the navigation more likely to avoid points below the threshold.

Conversely, for points with strong signals, cost variations are less significant, thereby reducing the

impact of π(xi, yi) on path selection for points above the threshold.

The weight λ1 is used to adjust the influence of π(xi+1, yi+1) in the cost function.

Finally, ρ(xi, yi) represents the probability of disconnection at the next point, calculated using

the CDF of the Nakagami-m distribution based on whether rsrp′(xi+1,yi+1)
falls below the threshold

τ . The weight λ2 is used to adjust the influence of ρ(xi, yi) in the cost function.
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The Nakagami-m distribution is chosen for its ability to model both LOS and NLOS conditions

through the shape parameter m. Specifically, m ≥ 1 represents LOS scenarios with milder fading,

while m < 1 captures NLOS scenarios with severe multipath effects. Compared to fixed-threshold

methods that deterministically disconnect when sampled RSRP less than the threshold τ , our

probabilistic model provides a finer-grained risk assessment by accounting for fading dynamics.

For example, two paths with the same average RSRP but different fading characteristics (LOS vs.

NLOS) can now be distinguished based on their disconnection probabilities. Mathematically, this

is reflected in the Nakagami-m CDF: for a fixed RSRP threshold τ ,

FNakagami(τ ;mNLOS,Ω) > FNakagami(τ ;mLOS,Ω) when mNLOS < mLOS. (21)

Consequently, paths through LOS regions inherently exhibit lower ρ((xi, yi)) values for the same

RSRP. By weighting ρ(xi, yi) heavily in the cost function via λ2, the navigation method prioritizes

LOS routes, thereby reducing disconnection risks without solely relying on absolute RSRP value.

When the prediction error of rsrp′(xi,yi)
is large, the robot may unexpectedly enter a region where

the RSRP falls below the threshold. This could result in a loss of network connectivity. To ensure

a reliable network connection, the robot needs to retreat to the nearest point where the RSRP

is above the threshold. Upon reaching this point, the path will be recalculated, and the robot

will proceed towards the destination, repeating this process until it successfully reaches the target

point.
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5 Evaluation: Simulation Setup and Performance Analysis

of the Proposed Navigation Method

5.1 Simulation Validity

To evaluate the performance of the proposed method, it is necessary to measure RSRP data across

all locations on the map simultaneously to obtain correct RSRP values. However, conducting mea-

surements at all locations simultaneously would require a significant cost. Therefore, we use the

Wireless InSite simulation software, employing the ray-tracing method for wireless signal propa-

gation simulation.

Apart from the parameters of the AP, the two key factors influencing the ray-tracing simulation

are the geometric structure of buildings and the material properties of the environment. To ensure

that the RSRP values used in the evaluation closely resemble those in the real environment, we

refined the BIM in Wireless InSite based on the geometric structure and material properties of the

Graduate School of Information Science and Technology (IST) building model at Suita Campus,

Osaka University. This refinement helps obtain simulated values that are as close to the real

environment as possible.

Additionally, we conducted real-world measurements at multiple locations around the IST

building. To obtain data that closely approximates measurements taken at the same time, we per-

formed multiple measurements at different dates but at the same time period under clear weather

conditions. The distribution of measured RSRP values across different dates and corresponding

time periods was used to calibrate theWireless InSite simulation results. After calibration, the sim-

ulated RSRP values at corresponding locations were found to be close to the peak of the real-world

RSRP distribution, indicating that the simulation results align well with actual measurements.

Since the simulation environment does not include moving obstacles such as pedestrians and

vehicles, small-scale fading may be more significant in real-world scenarios. However, in the navi-

gation task, the overall signal trend is more important than instantaneous signal variations. There-

fore, the simulation method remains applicable to this study.

In the section (5.2), we will use the Wireless InSite simulation results as the correct RSRP

values for configuring the robot’s navigation experiment. Additionally, for fitting the Nakagami-

m distribution required for real-world measurements during robot movement, we will use the

measurement data obtained from multiple locations at IST to fit the Nakagami-m distribution.

The fitted m values will then be interpolated spatially to estimate m at all points on the map. The

value of m represents the degree of signal fading in the space. Since signal fading exhibits spatial

correlation, spatial interpolation is a suitable method for estimating m values across the map.
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In summary, the evaluation in this study will use the Wireless InSite simulated RSRP as the

correct RSRP and the spatially interpolated fitted m as the correct m.

5.2 Experimental Configuration

To evaluate the performance of the proposed method, we conducted a series of simulation ex-

periments using the Wireless InSite simulation software, employing the ray-tracing method for

wireless signal propagation simulation. In our Wireless InSite[16] simulation environment, the

Table 2: Experiment Environment and Parameters

Experiment Parameters

Environment IST building model in Suita campus of Osaka University

5G AP Parameters

Carrier frequency 4.85 GHz, Bandwidth: 100 MHz

AP transmit power 36.6 dBm

Height 19.8 m

Location IST - A 6F

Wireless InSite Parameters

Simulation method Ray-tracing

Grid spcing 0.5m

Grid height 1.4m

Robot Parameters

Velocity Vmax = 0.5 m/s

Height 1.4 m

space is modeled as a 3D grid pattern, divided into equal cubes, each representing a point. Each

cube has a side length of 0.5 m, with its center positioned at a height of 1.4 m above the ground.

When Wireless InSite calculates the RSRP at each point, it employs the ray-tracing method, which

decomposes the signal into numerous rays and computes their refraction, reflection, and diffraction
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at obstacles. The simulated RSRP value at each point is obtained by summing the energy of all

rays reaching the corresponding cube.

As the robot traverses each cube, it collects RSRP measurements from a circular RSRP mea-

surement area. Given that the robot moves at a maximum velocity of Vmax = 0.5 m/s and the

diameter of the RSRP measurement area is 0.5 m, while RSRP is measured every 0.1 s, the robot

can acquire 10 RSRP measurements for each cube it passes through. Figure 4 illustrates this

process in a 2D schematic.

In our experiment, we simplify the 3D grid to a 2D grid, ignoring height variations of the robot

within the map. If the robot has the capability to ascend or descend, our method can be extended by

replacing the 2D coordinates in the set of visited points, D = [(x0, y0), (x1, y1), . . . , (xN−1, yN−1)],

with 3D coordinates and updating the GPR accordingly. Therefore, we consider the 2D grid

simplification sufficient for validating our approach.

The plan view position of the AP is located in the lower left of Figure 6. We conducted

simulations around IST using the parameters in Table 2 and the BIM model in Figure 5, with the

results shown in Figure 6. Different colors in Figure 6 represent different RSRP intensities.

The RSRP values transition from weak to strong, represented by a color gradient. In the

weakest regions, the RSRP is shown in purple to green, corresponding to approximately −140

dBm. As the RSRP increases, it shifts to yellow, around −120 dBm. In areas with very strong

RSRP, the color turns red, indicating an RSRP of approximately −80 dBm.

We use the RSRP data at each coordinate point in Figure 6 as the correct RSRP for evaluating

our method.

The reason for choosing IST area is that RSRP on the plaza side and the road side of IST-C

varies significantly, with the plaza side having good RSRP and the road side having poor RSRP.

This setup allows us to verify that when only Distance Cost is considered, the robot may traverse

the road side with poor RSRP, leading to disconnection. In contrast, when Signal coefficient factor

is taken into account, the robot will detour to the plaza side with better RSRP, thereby maintaining

continuous network connectivity.

5.3 Evaluation Scenarios

We evaluated the proposed method using a set of start and end points around IST-C and a Building

Information Modeling (BIM) model with correct shape and height but incorrect material.

This BIM model simulates an environment where the geometric structure is accurate, but the

material properties are not, allowing us to assess whether our method can still obtain paths with

good RSRP despite inaccuracies in environmental information.
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Start Point S
Target Point T
Path between two consecutive points
RSRP measurement area

Figure 4: A 2D schematic representation of the robot moving from the start point S to the

target point T in an obstacle-free environment while measuring RSRP within the RSRP

measurement area. Blue dots represent the start point S, red dots represent the target

point T , green arrows indicate the path between consecutive points, and orange circles

denote the RSRP measurement area.

Figure 7 shows the prior RSRP data available to the robot at the start point. As the robot

proceeds, this RSRP data is updated. By comparing with Figure 5, it is evident that there are

regions in the map where color transitions are gradual and others where sudden changes occur.

These differences indicate how RSRP varies in different areas. We aim to use Figure 7 to verify

that our method can capture gradually varying RSRP using ray-tracing simulation and GPR. In

contrast, where abrupt changes in RSRP occur, our method will revert to a safe location, update

the RSRP information on the map, and replan the path.

5.4 Evaluation Metrics

We compare three distinct navigation strategies:
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Figure 5: Experimental Environment: IST-C model in Wireless InSite with correct shape

and height but correct material (3D view)RSRP distribution in the experimental environ-

ment (plan view),

For the comparison of these three navigation strategies, we focus on two aspects: the num-

ber of steps required to complete each path (i.e., Distance Cost) and the observed RSRP along

the path. By comparing Distance Costs, we aim to confirm whether our method with only par-

tial signal knowledge can achieve similar path choices to the full-information navigation, thereby

demonstrating that signal safety is maintained with minimal path-length penalties. By compar-

ing the observed RSRP in each strategy, we aim to show that our method maintains the signal

above −120 dBm (i.e., strong signal) most of the time, thus achieving the target of ensuring robust

connectivity.

Finally, we will also discuss the line plots of observed and predicted RSRP along the route,

mapping specific sections of these plots to their corresponding locations in the environment. This

analysis will clarify how our method handles signal variations observed in the real world.

In subsequent comparative figures: From Figures 9 and 10, we observe that baseline distance-

based method produces the shortest route but includes portions where the RSRP falls well below

the threshold τ , risking network disconnection. The RSRP optimized method, which has complete

and correct RSRP data, detours around areas of weak signal. Because the AP is located near the

coordinates (−30,−60) in Figure 9, RSRP optimized method cost function results in a route that

is longer than the baseline method direct path. Notably, more than 80% of the RSRP optimized
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Figure 6: RSRP distribution in the experimental environment (plan view). RSRP in-

creases from weak.

method receives excellent signal levels (between −80 dBm and −100 dBm).

Our proposed Method, which starts with the prior RSRP data shown in Figure 7albeit in-

accurate and uses GPR for navigation, also detours similarly to the RSRP optimized method,

indicating that our method correctly captures the differences in RSRP on each side of the build-

ings. However, the Distance Cost for our method is slightly longer than both RSRP optimized

method and baseline distance-based method, because the robot must occasionally explore and even

backtrack to ensure a safe network connection due to the initial inaccuracies in the prior RSRP

data. Nonetheless, from the our method in Figure 10, we see that our method maintains RSRP

above the threshold τ in almost all cases even in a complex environment like IST. Specifically,

in our experimental scenario, the final Distance Cost was 213 steps, with only two points having

observed RSRP below τ . This demonstrates that our method can accurately capture signal vari-

ations in the environment, ensuring that more than 99% of the path stays above the threshold τ

despite limited prior information.
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Figure 7: Evaluation Environment: IST model in Wireless InSite with correct shape and

height but incorrect material (3D view),

Figure 11 shows both the predicted and observed RSRP values for our method along the path.

The blue line indicates the GPR-based predictions (supported by ray-tracing simulation), while

the yellow line indicates actual observed values measured by the robot.

In Figure 12, the pale blue shaded region (0−30 steps) on the path corresponds to the lower

blue zone in the left model figure, and similarly for the purple and black zones. Across these three

segments, the predicted and observed RSRP values exhibit small errors, and the path advances

smoothly, indicating that the robot’s predictions and observations are closely aligned. This outcome

suggests that our method — combining ray-tracing simulation with GPR — accurately captures

signal patterns along these parts of the route. The blue zone is near the start point, where the

amount of sampling data is initially limited. Since the prediction accuracy of GPR is directly

related to the amount of sampling data, one might expect lower accuracy near the start. However,

the small error in the blue region’s observed and predicted values confirms that the ray-tracing

simulation provides a strong initial estimate at the start. As more samples accumulate, we see

similarly small prediction errors in the purple and black regions, suggesting that the GPR method

captures the gradual, uniform changes in RSRP within these areas. In Figure 14, the green and
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Figure 8: Evaluation Environment: RSRP distribution in the experimental environment

(plan view).

black zones in the path have larger differences between predicted and observed RSRP. In these

areas, the path exhibits detours and backtracking, and in some cases the observed RSRP even

dips below the threshold τ . This indicates that the prior RSRP data in these regions differed

significantly from the actual signal conditions, so our method’s initial predictions did not fully

capture the local signal variation.

From the Gree zone in Figure15, we see that although the colors of the observed data and the

prior map are somewhat similar, they differ in gradient trends. This suggests that both predicted

and observed RSRP may still be strong, yet local discrepancies arise in the direction or rate of

change, which disrupts the GPR updates. Since our GPR method relies on differences between

predicted and observed values to refine the model, an uneven pattern of differences can reduce

predictive performance in that zone.

In the black zone in Figure14, by contrast, the color in the prior data deviates considerably
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Table 3: Comparison of Different Navigation Methods

Method Description

Method 1 (Blue Line) A baseline method using purely distance-based

optimization. Its cost function only minimizes

Distance Cost and ignores RSRP considera-

tions.

Method 2 (RSRP optimized method) A theoretical optimum that assumes perfect

prior knowledge of signal distribution. Its cost

function optimizes RSRP across the entire tra-

jectory.

Method 3 (Yellow Line) Our proposed method, which employs GPR

to estimate unknown RSRP values dynami-

cally. A safety-oriented cost function penal-

izes any signal below the viability threshold of

−140 dBm while also optimizing path efficiency.

from the actual observations, and the color transitions are abrupt rather than smooth. This

indicates a dramatic change in signal levels within these areas, where GPR tends to have difficulty

capturing such sudden variations. Even so, our method ultimately finds a safe signal path through

additional detours and exploration, demonstrating that it can still perform effectively in regions of

sharp signal fluctuations. Ray-tracing simulation requires an environmental model and detailed

information of the base stations as inputs to calculate signal propagation. In the method that

solely uses ray-tracing simulation, we use the model from Fig. 7 as the input; the AP are the same

as those used in our method, and the cost function is identical. Navigation is ultimately performed

based on the RSRP data computed by the ray-tracing simulation.

In Figure 16 as seen from the paths generated by the two methods, the ray-tracing simulation-

based method also chooses to detour around buildings , that is, to navigate along the side with bet-

ter RSRP. In blue area there are segments where the paths produced by the ray-tracing simulation-

based method and our method overlap , which indicates that even if the material properties of the

environmental model are inaccurate, the ray-tracing simulation can still capture signal propagation

to a certain extent.

Furthermore, by comparing the RSRP observations along the paths from both methods in
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Figure 9: Route Map for Three Navigation Methods.

Figure17, we find that the ray-tracing simulation-based method repeatedly enters regions where

the signal falls below the threshold. This suggests that the ray-tracing simulation erroneously

predicts the signal when entering these regions, causing the robot to unexpectedly traverse areas

with poor RSRP. In contrast, in our method the signal only dips below the threshold at two points.

Compared to the method that solely relies on ray-tracing simulation, our method incorporates

GPR to capture the discrepancy between the observed and predicted RSRP values, which is then

used to updateMrsrp. The GPR thus plays a direct role in maintaining network connectivity in

our method.
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Figure 10: RSRP Distribution Along Routes for Three Navigation Methods.

Figure 11: Predicted and Observed RSRP Values Along the Path by out method. Blue

Dots: Predicted values, Yellow Dots: Observed values.
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Figure 12: Path segments where the predicted and observed RSRP values are closely

matched in our method,

Figure 13: Path segments in the corresponding regions matched by our method.
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Figure 14: Path segments where the predicted and observed RSRP values have large errors

in our method,

Figure 15: Path segments in the corresponding regions matched by our method.
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Figure 16: Paths generated by our method and the method using only ray-tracing simu-

lation,
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Figure 17: RSRP observed along the paths generated by our method and the method

using only ray-tracing simulation.
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6 Conclusion

The widespread deployment of autonomous robots faces significant challenges in ensuring reliable

communication for continuous network connectivity, particularly in urban environments where

wireless signals are affected by multipath fading, obstacles, and environmental changes. Existing

methods, while addressing robust communication, remain inadequate in dynamic environments

due to their inability to account for rapid small-scale fading and their underutilization of robot

sensing capabilities.

To address these limitations, this study proposes a navigation method that considers both

Signal coefficient factor and Distance Cost within private 5G systems (Local 5G in Japan). The

RSRP value is predicted utilizing ray-tracing simulation and GPR, while disconnection probability

is quantified through a spatial Bayesian method and an empirical Nakagami-m distribution model.

The effectiveness of the proposed method is evaluated through simulation experiments using ray-

tracing simulation software Wireless InSite. The performance is assessed in terms of Distance Cost

and RSRP levels along the route, with a penalty applied for weak signal regions. By integrating

Signal coefficient factor navigation, the proposed method enables robots to efficiently reach their

destinations while maintaining reliable network connection.
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