

Subjective Well-Being (SWB)

- SWB is "a broad category of phenomena that includes people's emotional responses, domain satisfactions, and global judgements of life satisfaction" (Diener et al. 1999), p. 277
- SWB was also known as "psychological well-being" (Ryff 1989), "quality of life" (Frisch et al. 1992), or "subjective happiness" (Lyubomirsky and Lepper 1999), and similar to "comfort" (Pinto et al. 2017)
- Inner state of SWB can be influenced by environmental conditions (e.g., too hot or too cold causes discomfort)
- SWB increases productivity and efficiency

Our goal

their environment

Adapt the subject's environment (temperature, humidity) in an office room to increase SWB

Our approach Utilize brain measurements with electroencephalography (EEG) and identify SWB of a person to regulate

Fig. 1: Schematic representation of our study

- **Frontal Alpha Asymmetry** (FAA) has been shown to have a direct correlation to SWB (Urry et al. 2004; Xu et al. 2018), but not as a dynamic value that changes during one EEG session
- Our previous work (Wutzl et al. 2023), showed a similar result when SWB is changed on short time scales (60 or 30 seconds) via the environment
- We also focused on the asymmetry of different frontal sensors, as these sensor locations were reported to influence the asymmetry scores (Metzen et al. 2022)
- Now, we expand this research to include the asymmetries between all frontal sensors, as well as different EEG frequency bands

<u>Results</u>

- 30 students (28 right-handed, 2 left-handed, 16 males, 14 females, ages 2
- Results with p-values of less than 0.01 are shown in Table 1 (p < 0.001 in
- As expected from reports in the literature and our previous results: alpha frequency band shows statistically significant results.
- However, filtering into the delta or theta bands, or not filtering at all (non) also yields a positive linear correlation between frontal sensors from cont brain hemispheres and SWB

The correlation between Subjective Well-Being and EEG Frontal **Asymmetry in different frequency bands**

Betty Wutzl¹, Kenji Leibnitz^{2,1}, Masayuki Murata^{1,2}

¹ Graduate School of Information Science and Technology, Osaka University, Suita, Japan ² Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita, Japan

Email: b-wutzl@ist.osaka-u.ac.jp, Twitter: @BettyWutzl **Methods** • Environment was set to combinations of temperature-humidity values (low, medium, and high) **EEG recorded for 6 minutes** with 14-channel headset (EMOTIV EPOC X, EMOTIV, San Francisco, USA Record 14 EEG channels and SWB Subjects rated their SWB every 30 seconds on a scale from 1 (worst) to 10 (best) • Fig. 2 shows a graphical representation of the workflow and EEG sensor layout Preprocess 14 EEG channel recordings Standard preprocessing: EEGLAB (Delorme and Makeig 2004), HAPPE (The Harvard Automated Processing Pipeline for Electroencephalography) (Gabard-Durnam et al. 2018), Filter all channels into a MARA (Multiple Artifact Rejection Algorithm) (Winkler et al. 2011; Winkler et al. 2014), specific frequency band **SWB** separately for each subject and temperature-humidity pair Choose two channels After cleaning and bandpass filtering, the data was filtered into one of the frequency ch_1 and ch_2 bands: delta (0.5–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14-30 Hz), or EEG time series of ch_1 and gamma (31-100 Hz) to 10 s intervals before SWB values We also used the unfiltered signal as "non" (0.5-100 Hz) Calculation of the power spectrum of two channels ch_1 and ch_2 and determination of Calculate $Asym_{band}(ch_1, ch_2)$ their asymmetry Asym via Determine pairs $(Asym_{band}(ch_1, ch_2), SWB)$ $Asym_{band}(ch_1, ch_2) = mean(\log pow_{band}(ch_1) - \log pow_{band}(ch_2))$ Asym was then combined with the reported SWB value as tuple $(Asym_{band}(ch_1, ch_2), SWB)$ for each subject and band

- SMOTE (Chawla et al. 2002) to have an equal number of samples per SWB

	band	<i>ch</i> ₁	ch_2	p-value	CI	band	<i>ch</i> ₁	ch_2	p-value	CI
2.3 ± 4.2 years)	Delta	AF3	AF4	0.002	[0.40 <i>,</i> Inf)	Alpha	FC5	AF4	<0.001	[0.45 <i>,</i> Inf)
bold)	Delta	F7	AF4	<0.001	[0.39 <i>,</i> Inf)	Beta	F7	AF4	0.002	[0.34 <i>,</i> Inf)
	Delta	FC5	AF4	0.001	[0.30 <i>,</i> Inf)	Gamma	AF3	AF4	0.003	[0.55 <i>,</i> Inf)
	Theta	AF3	AF4	<0.001	[0.46 <i>,</i> Inf)	Gamma	F3	AF4	0.006	[0.38 <i>,</i> Inf)
	Theta	F7	F8	0.008	[0.17 <i>,</i> Inf)	Gamma	FC5	AF4	0.004	[0.25 <i>,</i> Inf)
),	Theta	F7	AF4	<0.001	[0.41 <i>,</i> Inf)	Non	AF3	AF4	0.006	[0.54 <i>,</i> Inf)
	Alpha	AF3	AF4	0.002	[0.50 <i>,</i> Inf)	Non	F7	AF4	<0.001	[0.68 <i>,</i> Inf)
ralateral	Alpha	F7	AF4	<0.001	[0.47 <i>,</i> Inf)	Non	FC5	AF4	0.003	[0.34 <i>,</i> Inf)

, integrability of the requercy pand considered. Entries cn_1 and cn_2 give the EEG channels in the calculation of $Asym_{band}(ch_1, ch_2)$. The columns p-value and CI specify the one-sided t-test and the confidence interval (CI) of the slope of the linear correlation. The results marked in bold are the ones with a p-value < 0.001.

Participants tend to report mid-ranged SWB values SWB (6−8) more frequently than very low or very high SWB values (1−3, 10) → we balanced the data set for each participant using

Linear regression for each subject with *Asym* as the independent and SWB as the dependent variable

Then one-sided t-test to determine the statistical significance that the mean of the slopes of the linear regression from each subject is greater than zero

Conclusion

- In our previous work, we focused on the alpha frequency band and the relationship between FAA and short-term SWB changes.
- Here, we present that also other frequency bands, i.e., delta or theta, or not filtering at all into a specific frequency band show similar results.
- Thus, we conclude that alpha is not the only EEG frequency band that should be investigated when focusing on short-term SWB changes.

