

Do posterior EEG asymmetries also correlate to short-term subjective well-being?

<u>Betty Wutzl ^{1,2}, Kenji Leibnitz ^{2,1}, Masayuki Murata ^{1,2}</u>

¹ Graduate School of Information Science and Technology, Osaka University, Suita, Japan;

² Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita, Japan **Contact: b.wutzl.ist@osaka-u.ac.jp, Twitter: @BettyWutzl**

Subjective Well-Being (SWB)

- What is SWB?
 - "A broad category of phenomena that includes people's emotional responses, domain satisfactions, and global judgements of life satisfaction" (Diener et al. 1999, p. 277)
 - Also known as "psychological well-being" (Ryff 1989), "quality of life" (Frisch et al. 1992), or "subjective happiness"
 - (Lyubomirsky and Lepper 1999), and similar to "comfort" (Pinto et al. 2017)
 - SWB can be influenced by environmental conditions (e.g., too hot or too cold causes discomfort)
- Electroencephalography (EEG) and SWB

情報通信研究機構

- Focus of the literature is on frontal alpha asymmetry (FAA) (Reznik and Allen 2018)
- Correlation between SWB and Frontal Alpha Asymmetry (FAA) using EEG, e.g., (Urry et al. 2004; Xu et al. 2018)
- SWB usually measured as a static metric or with psychological/psychiatric interventions over weeks, months, or longer
- Correlation between FAA and SWB also holds for short-term times, i.e., 60 or 30 seconds (Wutzl et al. 2023)
- Research Question:
 - Do posterior EEG asymmetries also correlate to short-term subjective well-being?

<u>Methods</u>

- 30 university students (28 right-handed, 2 left-handed, 16 males, 14 females, ages 22.3 ± 4.2 years) participated in the experiment
- Variation of SWB via temperature and humidity by changing the environment to different combinations of temperature-humidity values (low, medium, and high)
- EEG recording for up to 9 minutes with the Emotiv EPOC X headset (EMOTIV, San Francisco, USA)
- SWB was given verbally every 30 seconds by the participant on a scale from 1 (worst) to 10 (best)
- EEG preprocessing (each subject and session individually): EEGLAB (Delorme and Makeig 2004), HAPPE (Gabard-Durnam et al. 2018), MARA (Winkler et al. 2011, 2014)
- Filter EEG data into different frequency bands, i.e., delta band (0.5–3 Hz), theta band (4-7 Hz), alpha band (8-13 Hz), beta band (14-30 Hz), gamma band (> 31 Hz) and selection of specific time windows, i.e., 10 seconds before the SWB was recorded

- Calculate asymmetries Asym from power spectrum $Asym_{band}(ch_1, ch_2) = mean(log pow_{band}(ch_1) log pow_{band}(ch_2))$
- Several $(Asym_{band}(ch_1, ch_2), SWB)$ for each combination of bands and EEG channels
- Many samples for SWB values 6, 7, or 8 and only few for SWB values 1, 2, 3, or 10
- Balancing of data set with SMOTE (Synthetic Minority Over-Sampling Technique) (Chawla 2002)
- Output of SMOTE is random \Rightarrow we run the same analysis 10 times per participant
- 10 slopes and intercepts per individual participant \Rightarrow average slope
- Statistical significance of the mean of these averaged slopes from all participants via one-sided t-test,

i.e., slope (of linear regression *Asym* and SWB) > 0

Results (Wutzl et al. 2024)

Table 1. Results of the analyses with the original reference electrode for sensor combinations in the posterior regions and unadjusted p < 0.1: The first column shows the considered frequency band. Entries in the second and third columns give the EEG channels used for ch_1 and ch_2 in Equation (1). The fourth column shows the unadjusted *p*-value of the two-sided *t*-test. The last two columns give the lower and upper bounds of the CI of the slope of the linear correlation, respectively.

Band	ch_1	ch2	<i>p</i> -Value	CI10w	CIhigh
Theta	T8	P7	0.067	-0.47	0.02
Theta	P 8	O1	0.063	-0.72	0.02
Beta	O2	P7	0.054	-0.95	0.01
Gamma	O2	P7	0.042	-1.05	-0.02
Gamma	T8	O1	0.046	0.01	1.43
Non	O2	P7	0.031	-1.25	-0.07
Non	T8	O1	0.052	-0.00	1.05

Table 2. Results of the analyses with AF3 as reference electrode for sensor combinations in the posterior regions and unadjusted p < 0.1: The first column shows the considered frequency band. Entries in the second and third columns give the EEG channels used for ch_1 and ch_2 in Equation (1). The fourth column shows the unadjusted *p*-value of the two-sided *t*-test. The last two columns give the lower and upper bounds of the CI of the slope of the linear correlation, respectively.

Band	ch_1	ch2	<i>p</i> -Value	CI10w	$\mathbf{CI}_{\mathtt{high}}$
Delta	O2	T7	0.048	-0.55	-0.00
Theta	P8	P7	0.096	-0.66	0.06
Theta	P8	O1	0.026	-0.62	-0.04
Alpha	O2	P7	0.011	-0.93	-0.13
Alpha	T8	P7	0.026	-0.71	-0.05
Beta	T8	T7	0.094	-1.08	0.09
Beta	O2	P7	0.014	-1.52	-0.19
Gamma	O2	T7	0.078	-0.92	0.05
Gamma	O2	P7	0.047	-1.30	-0.01
Non	O2	T7	0.056	-1.10	0.02
Non	O2	P7	0.024	-1.84	-0.14

Conclusion

- The experimental setup did not allow for the demonstration of a statistically significant correlation between the asymmetry calculated over any EEG sensor of the posterior regions when filtered in any possible EEG frequency band
- We observed trends, with the most prominent resulting from filtering in the beta band and asymmetry calculations in the reverse direction compared to the anterior regions
- Focusing on FAA when analyzing SWB may not provide a comprehensive understanding of the underlying brain mechanisms
- While FAA demonstrates a stronger correlation with short-term SWB, posterior regions also exhibit effects that should not be overlooked

Acknowledgment This study was supported by Daikin Industries, Ltd.