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Fig. 2. Beam coverage of a binary-tree structured codebook.

We need to test all the M codewords one by one to find the best
one, and treat it as a new parent codeword for the next-stage
search. Therefore, the search time (number of tests) for Tx/Rx
joint training is

T = M logM NT + M logM NR. (16)

In the next subsection we will design a codebook with
M = 2, for the reason that when M = 2 the codebook tree
is a typical binary tree, and the number of antennas is pow-
ers of two, which is generally used in antenna array design.
Nevertheless, extending the proposed method to other values of
M is straightforward.

B. The Deactivation Approach

As a basis of the joint sub-array and deactivation approach,
we first introduce the deactivation (DEACT) approach in this
subsection to design a binary-tree codebook, which has the
beam coverage shown in Fig. 2, where there are log2(N ) + 1
layers with indices from k = 0 to k = log2(N ), and the number
of codewords in the k-th layer Nk = 2k . Here N denotes the
number of antennas of an arbitrary array. Thus, N = NT at the
transmitter and N = NR at the receiver. Besides, we have

CV(w(k, n)) = CV(w(k + 1, 2n − 1)) ∪ CV(w(k + 1, 2n)),

k = 0, 1, . . . , (log2(N ) − 1), n = 1, 2, 3, . . . , 2k . (17)

In our method, we define

CV(a(N ,!)) =
[
!− 1

N
,!+ 1

N

]
, (18)

which means that the steering vectors have a beam width 2/N
centering at the steering angle [24]. In other words, within the
beam coverage of a(N ,!), it has the maximal beam gain along
the angle!, while the minimal beam gain along the angles!±
1/N . Thus, we can compute the value of ρ for our codebook as

ρ =
∣∣∣∣
a(N ,!− 1/N )Ha(N ,!)

a(N ,!)Ha(N ,!)

∣∣∣∣

or
∣∣∣∣
a(N ,!+ 1/N )Ha(N ,!)

a(N ,!)Ha(N ,!)

∣∣∣∣

= 1
N

∣∣∣∣∣

N∑

n=1

ejπ(n−1)/N

∣∣∣∣∣ . (19)

Fig. 3. Beam patterns of w(2, 1), w(2, 2), w(1, 1), w(1, 2) and w(0, 1) for the
DEACT approach, where N = 128.

Although the value of ρ depends on N , we have ρ ≈ 0.64 given
that N is large, e.g., N ≥ 8. Even when N is small, ρ is still
close to 0.64, e.g., ρ = 0.65 when N = 4.

Notice that the N codewords in the last layer cover
an angle range [−1, 1] in total, which means that all
these codewords must have the narrowest beam width 2/N
with different steering angles. In other words, the code-
words in the last layer should be the steering vectors
with angles evenly sampled within [−1, 1]. Consequently,
we have CV(w(log2(N ), n)) = [−1 + 2n−2

N ,−1 + 2n
N ], n =

1, 2, . . . , N . With the beam coverage of the last-layer code-
words, we can further obtain that of the codewords in
the other layers in turn as an order of descending layer
indices, i.e., obtain CV(w(log2(N ) − 1, n)),CV(w(log2(N ) −
2, n)), . . . ,CV(w(0, n)) in turn. Finally, the beam coverage of
all the codewords can be uniformly written as

CV(w(k, n)) =
[
−1 + 2n − 2

2k ,−1 + 2n
2k

]
,

k = 0, 1, 2, . . . , log2 N , n = 1, 2, 3, . . . , 2k . (20)

Comparing (20) with (18), it is clear that when

w(k, n) =
[

a
(

2k,−1 + 2n − 1
2k

)T

, 0T
(N−2k )×1

]T

, (21)

(20) is satisfied. This is just the deactivation approach that was
proposed in [27], where the number of active antennas is 2k in
the k-th layer, and the other antennas are all turned off. Fig. 3
shows an example of beam pattern of the DEACT approach for
the case of N = 128. From this figure we find that the beam
coverage of w(0, 1) is just the union of those of w(1, 1) and
w(1, 2), while the beam coverage of w(1, 1) is just the union of
those of w(2, 1) and w(2, 2).

C. The Joint Sub-Array and Deactivation Approach

It is noted that for the deactivation approach, when k is small,
the number of active antennas is small, or even 1 when k =
0. This greatly limits the maximal total transmission power of
an mmWave device. In general, we hope the number of active
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Fig. 2. Beam coverage of a binary-tree structured codebook.

We need to test all the M codewords one by one to find the best
one, and treat it as a new parent codeword for the next-stage
search. Therefore, the search time (number of tests) for Tx/Rx
joint training is

T = M logM NT + M logM NR. (16)

In the next subsection we will design a codebook with
M = 2, for the reason that when M = 2 the codebook tree
is a typical binary tree, and the number of antennas is pow-
ers of two, which is generally used in antenna array design.
Nevertheless, extending the proposed method to other values of
M is straightforward.

B. The Deactivation Approach

As a basis of the joint sub-array and deactivation approach,
we first introduce the deactivation (DEACT) approach in this
subsection to design a binary-tree codebook, which has the
beam coverage shown in Fig. 2, where there are log2(N ) + 1
layers with indices from k = 0 to k = log2(N ), and the number
of codewords in the k-th layer Nk = 2k . Here N denotes the
number of antennas of an arbitrary array. Thus, N = NT at the
transmitter and N = NR at the receiver. Besides, we have

CV(w(k, n)) = CV(w(k + 1, 2n − 1)) ∪ CV(w(k + 1, 2n)),

k = 0, 1, . . . , (log2(N ) − 1), n = 1, 2, 3, . . . , 2k . (17)

In our method, we define

CV(a(N ,!)) =
[
!− 1

N
,!+ 1

N

]
, (18)

which means that the steering vectors have a beam width 2/N
centering at the steering angle [24]. In other words, within the
beam coverage of a(N ,!), it has the maximal beam gain along
the angle!, while the minimal beam gain along the angles!±
1/N . Thus, we can compute the value of ρ for our codebook as

ρ =
∣∣∣∣
a(N ,!− 1/N )Ha(N ,!)

a(N ,!)Ha(N ,!)
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Fig. 3. Beam patterns of w(2, 1), w(2, 2), w(1, 1), w(1, 2) and w(0, 1) for the
DEACT approach, where N = 128.

Although the value of ρ depends on N , we have ρ ≈ 0.64 given
that N is large, e.g., N ≥ 8. Even when N is small, ρ is still
close to 0.64, e.g., ρ = 0.65 when N = 4.

Notice that the N codewords in the last layer cover
an angle range [−1, 1] in total, which means that all
these codewords must have the narrowest beam width 2/N
with different steering angles. In other words, the code-
words in the last layer should be the steering vectors
with angles evenly sampled within [−1, 1]. Consequently,
we have CV(w(log2(N ), n)) = [−1 + 2n−2

N ,−1 + 2n
N ], n =

1, 2, . . . , N . With the beam coverage of the last-layer code-
words, we can further obtain that of the codewords in
the other layers in turn as an order of descending layer
indices, i.e., obtain CV(w(log2(N ) − 1, n)),CV(w(log2(N ) −
2, n)), . . . ,CV(w(0, n)) in turn. Finally, the beam coverage of
all the codewords can be uniformly written as

CV(w(k, n)) =
[
−1 + 2n − 2

2k ,−1 + 2n
2k

]
,

k = 0, 1, 2, . . . , log2 N , n = 1, 2, 3, . . . , 2k . (20)

Comparing (20) with (18), it is clear that when

w(k, n) =
[

a
(

2k,−1 + 2n − 1
2k

)T

, 0T
(N−2k )×1

]T

, (21)

(20) is satisfied. This is just the deactivation approach that was
proposed in [27], where the number of active antennas is 2k in
the k-th layer, and the other antennas are all turned off. Fig. 3
shows an example of beam pattern of the DEACT approach for
the case of N = 128. From this figure we find that the beam
coverage of w(0, 1) is just the union of those of w(1, 1) and
w(1, 2), while the beam coverage of w(1, 1) is just the union of
those of w(2, 1) and w(2, 2).

C. The Joint Sub-Array and Deactivation Approach

It is noted that for the deactivation approach, when k is small,
the number of active antennas is small, or even 1 when k =
0. This greatly limits the maximal total transmission power of
an mmWave device. In general, we hope the number of active
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We need to test all the M codewords one by one to find the best
one, and treat it as a new parent codeword for the next-stage
search. Therefore, the search time (number of tests) for Tx/Rx
joint training is

T = M logM NT + M logM NR. (16)

In the next subsection we will design a codebook with
M = 2, for the reason that when M = 2 the codebook tree
is a typical binary tree, and the number of antennas is pow-
ers of two, which is generally used in antenna array design.
Nevertheless, extending the proposed method to other values of
M is straightforward.

B. The Deactivation Approach

As a basis of the joint sub-array and deactivation approach,
we first introduce the deactivation (DEACT) approach in this
subsection to design a binary-tree codebook, which has the
beam coverage shown in Fig. 2, where there are log2(N ) + 1
layers with indices from k = 0 to k = log2(N ), and the number
of codewords in the k-th layer Nk = 2k . Here N denotes the
number of antennas of an arbitrary array. Thus, N = NT at the
transmitter and N = NR at the receiver. Besides, we have

CV(w(k, n)) = CV(w(k + 1, 2n − 1)) ∪ CV(w(k + 1, 2n)),

k = 0, 1, . . . , (log2(N ) − 1), n = 1, 2, 3, . . . , 2k . (17)

In our method, we define

CV(a(N ,!)) =
[
!− 1

N
,!+ 1

N

]
, (18)

which means that the steering vectors have a beam width 2/N
centering at the steering angle [24]. In other words, within the
beam coverage of a(N ,!), it has the maximal beam gain along
the angle!, while the minimal beam gain along the angles!±
1/N . Thus, we can compute the value of ρ for our codebook as

ρ =
∣∣∣∣
a(N ,!− 1/N )Ha(N ,!)

a(N ,!)Ha(N ,!)
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or
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Fig. 3. Beam patterns of w(2, 1), w(2, 2), w(1, 1), w(1, 2) and w(0, 1) for the
DEACT approach, where N = 128.

Although the value of ρ depends on N , we have ρ ≈ 0.64 given
that N is large, e.g., N ≥ 8. Even when N is small, ρ is still
close to 0.64, e.g., ρ = 0.65 when N = 4.

Notice that the N codewords in the last layer cover
an angle range [−1, 1] in total, which means that all
these codewords must have the narrowest beam width 2/N
with different steering angles. In other words, the code-
words in the last layer should be the steering vectors
with angles evenly sampled within [−1, 1]. Consequently,
we have CV(w(log2(N ), n)) = [−1 + 2n−2

N ,−1 + 2n
N ], n =

1, 2, . . . , N . With the beam coverage of the last-layer code-
words, we can further obtain that of the codewords in
the other layers in turn as an order of descending layer
indices, i.e., obtain CV(w(log2(N ) − 1, n)),CV(w(log2(N ) −
2, n)), . . . ,CV(w(0, n)) in turn. Finally, the beam coverage of
all the codewords can be uniformly written as

CV(w(k, n)) =
[
−1 + 2n − 2

2k ,−1 + 2n
2k

]
,

k = 0, 1, 2, . . . , log2 N , n = 1, 2, 3, . . . , 2k . (20)

Comparing (20) with (18), it is clear that when

w(k, n) =
[

a
(

2k,−1 + 2n − 1
2k

)T

, 0T
(N−2k )×1

]T

, (21)

(20) is satisfied. This is just the deactivation approach that was
proposed in [27], where the number of active antennas is 2k in
the k-th layer, and the other antennas are all turned off. Fig. 3
shows an example of beam pattern of the DEACT approach for
the case of N = 128. From this figure we find that the beam
coverage of w(0, 1) is just the union of those of w(1, 1) and
w(1, 2), while the beam coverage of w(1, 1) is just the union of
those of w(2, 1) and w(2, 2).

C. The Joint Sub-Array and Deactivation Approach

It is noted that for the deactivation approach, when k is small,
the number of active antennas is small, or even 1 when k =
0. This greatly limits the maximal total transmission power of
an mmWave device. In general, we hope the number of active
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Fig. 2. Beam coverage of a binary-tree structured codebook.

We need to test all the M codewords one by one to find the best
one, and treat it as a new parent codeword for the next-stage
search. Therefore, the search time (number of tests) for Tx/Rx
joint training is

T = M logM NT + M logM NR. (16)

In the next subsection we will design a codebook with
M = 2, for the reason that when M = 2 the codebook tree
is a typical binary tree, and the number of antennas is pow-
ers of two, which is generally used in antenna array design.
Nevertheless, extending the proposed method to other values of
M is straightforward.

B. The Deactivation Approach

As a basis of the joint sub-array and deactivation approach,
we first introduce the deactivation (DEACT) approach in this
subsection to design a binary-tree codebook, which has the
beam coverage shown in Fig. 2, where there are log2(N ) + 1
layers with indices from k = 0 to k = log2(N ), and the number
of codewords in the k-th layer Nk = 2k . Here N denotes the
number of antennas of an arbitrary array. Thus, N = NT at the
transmitter and N = NR at the receiver. Besides, we have

CV(w(k, n)) = CV(w(k + 1, 2n − 1)) ∪ CV(w(k + 1, 2n)),

k = 0, 1, . . . , (log2(N ) − 1), n = 1, 2, 3, . . . , 2k . (17)

In our method, we define

CV(a(N ,!)) =
[
!− 1

N
,!+ 1

N

]
, (18)

which means that the steering vectors have a beam width 2/N
centering at the steering angle [24]. In other words, within the
beam coverage of a(N ,!), it has the maximal beam gain along
the angle!, while the minimal beam gain along the angles!±
1/N . Thus, we can compute the value of ρ for our codebook as

ρ =
∣∣∣∣
a(N ,!− 1/N )Ha(N ,!)

a(N ,!)Ha(N ,!)

∣∣∣∣

or
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Fig. 3. Beam patterns of w(2, 1), w(2, 2), w(1, 1), w(1, 2) and w(0, 1) for the
DEACT approach, where N = 128.

Although the value of ρ depends on N , we have ρ ≈ 0.64 given
that N is large, e.g., N ≥ 8. Even when N is small, ρ is still
close to 0.64, e.g., ρ = 0.65 when N = 4.

Notice that the N codewords in the last layer cover
an angle range [−1, 1] in total, which means that all
these codewords must have the narrowest beam width 2/N
with different steering angles. In other words, the code-
words in the last layer should be the steering vectors
with angles evenly sampled within [−1, 1]. Consequently,
we have CV(w(log2(N ), n)) = [−1 + 2n−2

N ,−1 + 2n
N ], n =

1, 2, . . . , N . With the beam coverage of the last-layer code-
words, we can further obtain that of the codewords in
the other layers in turn as an order of descending layer
indices, i.e., obtain CV(w(log2(N ) − 1, n)),CV(w(log2(N ) −
2, n)), . . . ,CV(w(0, n)) in turn. Finally, the beam coverage of
all the codewords can be uniformly written as

CV(w(k, n)) =
[
−1 + 2n − 2

2k ,−1 + 2n
2k

]
,

k = 0, 1, 2, . . . , log2 N , n = 1, 2, 3, . . . , 2k . (20)

Comparing (20) with (18), it is clear that when

w(k, n) =
[

a
(

2k,−1 + 2n − 1
2k

)T

, 0T
(N−2k )×1

]T

, (21)

(20) is satisfied. This is just the deactivation approach that was
proposed in [27], where the number of active antennas is 2k in
the k-th layer, and the other antennas are all turned off. Fig. 3
shows an example of beam pattern of the DEACT approach for
the case of N = 128. From this figure we find that the beam
coverage of w(0, 1) is just the union of those of w(1, 1) and
w(1, 2), while the beam coverage of w(1, 1) is just the union of
those of w(2, 1) and w(2, 2).

C. The Joint Sub-Array and Deactivation Approach

It is noted that for the deactivation approach, when k is small,
the number of active antennas is small, or even 1 when k =
0. This greatly limits the maximal total transmission power of
an mmWave device. In general, we hope the number of active
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We need to test all the M codewords one by one to find the best
one, and treat it as a new parent codeword for the next-stage
search. Therefore, the search time (number of tests) for Tx/Rx
joint training is

T = M logM NT + M logM NR. (16)

In the next subsection we will design a codebook with
M = 2, for the reason that when M = 2 the codebook tree
is a typical binary tree, and the number of antennas is pow-
ers of two, which is generally used in antenna array design.
Nevertheless, extending the proposed method to other values of
M is straightforward.

B. The Deactivation Approach

As a basis of the joint sub-array and deactivation approach,
we first introduce the deactivation (DEACT) approach in this
subsection to design a binary-tree codebook, which has the
beam coverage shown in Fig. 2, where there are log2(N ) + 1
layers with indices from k = 0 to k = log2(N ), and the number
of codewords in the k-th layer Nk = 2k . Here N denotes the
number of antennas of an arbitrary array. Thus, N = NT at the
transmitter and N = NR at the receiver. Besides, we have

CV(w(k, n)) = CV(w(k + 1, 2n − 1)) ∪ CV(w(k + 1, 2n)),

k = 0, 1, . . . , (log2(N ) − 1), n = 1, 2, 3, . . . , 2k . (17)

In our method, we define

CV(a(N ,!)) =
[
!− 1

N
,!+ 1

N

]
, (18)

which means that the steering vectors have a beam width 2/N
centering at the steering angle [24]. In other words, within the
beam coverage of a(N ,!), it has the maximal beam gain along
the angle!, while the minimal beam gain along the angles!±
1/N . Thus, we can compute the value of ρ for our codebook as

ρ =
∣∣∣∣
a(N ,!− 1/N )Ha(N ,!)

a(N ,!)Ha(N ,!)

∣∣∣∣

or
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Fig. 3. Beam patterns of w(2, 1), w(2, 2), w(1, 1), w(1, 2) and w(0, 1) for the
DEACT approach, where N = 128.

Although the value of ρ depends on N , we have ρ ≈ 0.64 given
that N is large, e.g., N ≥ 8. Even when N is small, ρ is still
close to 0.64, e.g., ρ = 0.65 when N = 4.

Notice that the N codewords in the last layer cover
an angle range [−1, 1] in total, which means that all
these codewords must have the narrowest beam width 2/N
with different steering angles. In other words, the code-
words in the last layer should be the steering vectors
with angles evenly sampled within [−1, 1]. Consequently,
we have CV(w(log2(N ), n)) = [−1 + 2n−2

N ,−1 + 2n
N ], n =

1, 2, . . . , N . With the beam coverage of the last-layer code-
words, we can further obtain that of the codewords in
the other layers in turn as an order of descending layer
indices, i.e., obtain CV(w(log2(N ) − 1, n)),CV(w(log2(N ) −
2, n)), . . . ,CV(w(0, n)) in turn. Finally, the beam coverage of
all the codewords can be uniformly written as

CV(w(k, n)) =
[
−1 + 2n − 2

2k ,−1 + 2n
2k

]
,

k = 0, 1, 2, . . . , log2 N , n = 1, 2, 3, . . . , 2k . (20)

Comparing (20) with (18), it is clear that when

w(k, n) =
[

a
(

2k,−1 + 2n − 1
2k

)T

, 0T
(N−2k )×1

]T

, (21)

(20) is satisfied. This is just the deactivation approach that was
proposed in [27], where the number of active antennas is 2k in
the k-th layer, and the other antennas are all turned off. Fig. 3
shows an example of beam pattern of the DEACT approach for
the case of N = 128. From this figure we find that the beam
coverage of w(0, 1) is just the union of those of w(1, 1) and
w(1, 2), while the beam coverage of w(1, 1) is just the union of
those of w(2, 1) and w(2, 2).

C. The Joint Sub-Array and Deactivation Approach

It is noted that for the deactivation approach, when k is small,
the number of active antennas is small, or even 1 when k =
0. This greatly limits the maximal total transmission power of
an mmWave device. In general, we hope the number of active
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1. Internal State (→channel state)
𝐹 𝜋 = 𝔼0 2̃|, ln 𝑄 𝑠̃|𝜋 − ln 𝑃 𝑠̃, P𝑜|𝜋
𝑄∗ 𝑠̃|𝜋 = arg	min

0
𝐹(𝜋)

Time series of internal state, action 𝑠̃, P𝑜 and 
action 𝜋

Proposal Model (2/3)
2. Action (= codebook code)
𝐺 𝜋
= 𝔼0 2̃, 67|, ln 𝑄 𝑠̃|𝜋 − ln𝑄 𝑠̃| P𝑜, 𝜋 𝑃 P𝑜 𝐶
𝑄∗ 𝜋
= arg	min

0
−𝐺 𝜋 − 𝐹 𝜋 + ln𝑃 𝜋-

𝜋 ∈ 0, 1, 2, 3
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Fig. 2. Beam coverage of a binary-tree structured codebook.

We need to test all the M codewords one by one to find the best
one, and treat it as a new parent codeword for the next-stage
search. Therefore, the search time (number of tests) for Tx/Rx
joint training is

T = M logM NT + M logM NR. (16)

In the next subsection we will design a codebook with
M = 2, for the reason that when M = 2 the codebook tree
is a typical binary tree, and the number of antennas is pow-
ers of two, which is generally used in antenna array design.
Nevertheless, extending the proposed method to other values of
M is straightforward.

B. The Deactivation Approach

As a basis of the joint sub-array and deactivation approach,
we first introduce the deactivation (DEACT) approach in this
subsection to design a binary-tree codebook, which has the
beam coverage shown in Fig. 2, where there are log2(N ) + 1
layers with indices from k = 0 to k = log2(N ), and the number
of codewords in the k-th layer Nk = 2k . Here N denotes the
number of antennas of an arbitrary array. Thus, N = NT at the
transmitter and N = NR at the receiver. Besides, we have

CV(w(k, n)) = CV(w(k + 1, 2n − 1)) ∪ CV(w(k + 1, 2n)),

k = 0, 1, . . . , (log2(N ) − 1), n = 1, 2, 3, . . . , 2k . (17)

In our method, we define

CV(a(N ,!)) =
[
!− 1

N
,!+ 1

N

]
, (18)

which means that the steering vectors have a beam width 2/N
centering at the steering angle [24]. In other words, within the
beam coverage of a(N ,!), it has the maximal beam gain along
the angle!, while the minimal beam gain along the angles!±
1/N . Thus, we can compute the value of ρ for our codebook as

ρ =
∣∣∣∣
a(N ,!− 1/N )Ha(N ,!)

a(N ,!)Ha(N ,!)

∣∣∣∣

or
∣∣∣∣
a(N ,!+ 1/N )Ha(N ,!)

a(N ,!)Ha(N ,!)

∣∣∣∣

= 1
N

∣∣∣∣∣

N∑

n=1

ejπ(n−1)/N

∣∣∣∣∣ . (19)

Fig. 3. Beam patterns of w(2, 1), w(2, 2), w(1, 1), w(1, 2) and w(0, 1) for the
DEACT approach, where N = 128.

Although the value of ρ depends on N , we have ρ ≈ 0.64 given
that N is large, e.g., N ≥ 8. Even when N is small, ρ is still
close to 0.64, e.g., ρ = 0.65 when N = 4.

Notice that the N codewords in the last layer cover
an angle range [−1, 1] in total, which means that all
these codewords must have the narrowest beam width 2/N
with different steering angles. In other words, the code-
words in the last layer should be the steering vectors
with angles evenly sampled within [−1, 1]. Consequently,
we have CV(w(log2(N ), n)) = [−1 + 2n−2

N ,−1 + 2n
N ], n =

1, 2, . . . , N . With the beam coverage of the last-layer code-
words, we can further obtain that of the codewords in
the other layers in turn as an order of descending layer
indices, i.e., obtain CV(w(log2(N ) − 1, n)),CV(w(log2(N ) −
2, n)), . . . ,CV(w(0, n)) in turn. Finally, the beam coverage of
all the codewords can be uniformly written as

CV(w(k, n)) =
[
−1 + 2n − 2

2k ,−1 + 2n
2k

]
,

k = 0, 1, 2, . . . , log2 N , n = 1, 2, 3, . . . , 2k . (20)

Comparing (20) with (18), it is clear that when

w(k, n) =
[

a
(

2k,−1 + 2n − 1
2k

)T

, 0T
(N−2k )×1

]T

, (21)

(20) is satisfied. This is just the deactivation approach that was
proposed in [27], where the number of active antennas is 2k in
the k-th layer, and the other antennas are all turned off. Fig. 3
shows an example of beam pattern of the DEACT approach for
the case of N = 128. From this figure we find that the beam
coverage of w(0, 1) is just the union of those of w(1, 1) and
w(1, 2), while the beam coverage of w(1, 1) is just the union of
those of w(2, 1) and w(2, 2).

C. The Joint Sub-Array and Deactivation Approach

It is noted that for the deactivation approach, when k is small,
the number of active antennas is small, or even 1 when k =
0. This greatly limits the maximal total transmission power of
an mmWave device. In general, we hope the number of active
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3. Observed Value (= SNR, code)
1.  𝜋 = 0 or not at the other layer.
2. Quantized SNR

Proposal Model (3/3)
4. Learning
ℱ = 𝔼0 ln 𝑄 𝑠̃, 𝐴, 𝐵, 𝜋 − ln 𝑃 𝑠̃, P𝑜, 𝐴, 𝐵, 𝜋
𝐴∗ = arg	min

8
ℱ , 𝐵∗ = arg	min

9
ℱ

Learnable parameters 𝐴, 𝐵

Likelihood 𝑃 𝑜: 𝑠: , 𝐴

Transition probability 𝑃 𝑠:;* 𝑠: , 𝜋, 𝐵

POMDP in Active Inference Model [4].



Improvements
1. Inference Period 𝑇$%&'(

Coarser beam layer’s 𝑇!"#$%	> Finer beam layer’s 𝑇!"#$%

2. Introducing 𝜋 = 3
𝜋 = 3 means that the codebook code does not change.

3. High Recursive Transition Probability when 𝜋 = 3
A stable internal state leads to stable learning of the 
likelihood 𝑃 𝑜& 𝑠&, 𝐴 .



Setting and Method
• Beamforming Settings

� 3-layer hierarchical codebook (0th, 1st, 2nd)
� 30 rounds, min 1sec SNR feedback period, 

• Active Inference
� Observing -> Inferring the internal state -> Inferring the action -> Learning
� Inference periods 𝑇'%(!" = 2, 1	𝑠𝑒𝑐 of the upper or lower layer

• Beam Training (BT)
� Divide and Conquer Algorithm
� Training periods 𝑇'%(!" = 10, 60, 100	𝑠𝑒𝑐 of BT10, BT60, BT100

• Nondirectional (baseline)
� Nondirectional Beam

𝜔 = 0.1, 0.5, 1.0, 1.5°/𝑠

200𝑚



Fig. 1. SNR averages at each angle from the base station at 𝜔 = 1.0°/𝑠 with 
(A) Active Inference, (B) BT10, (C) BT60, (D) BT100. 

Result (1/3)
Algorithm 1 Beam Training

1: Initialization: l  0, t  tcurrent, �max  0, ⇡i  
0 (i = 1, · · · , L)

2: while l < L do

3: l l + 1, ⇡max  0
4: for ⇡l  1, 2 do

5: Apply the k-th beam vector wk
l based on (10), and

observe the SNR �(t) at time t

6: if �max < �(t) then

7: �max  �(t), ⇡max  ⇡l

8: end if

9: Wait for 1 s, so that t t+ 1
10: end for

11: if ⇡max = 0 then

12: break

13: else

14: ⇡l = ⇡max

15: end if

16: end while

be set to anticipate situations where such changes cannot be
predicted in advance.

3) Nondirectional: This is the condition where the base
station continues to emit an omnidirectional beam all the time
and does not beamform. The performance of adaptively con-
trolled beamforming in response to channel condition changes
must at least exceed the performance of this nondirectional
condition.

C. Result
In Active Inference, it is better to evaluate the results after

learning because learning improves the prediction accuracy of
the optimal beam. In this study, the results of the last 15 rounds
are considered to be the post-learning results, and Active
Inference, BT, and nondirectional conditions are compared.

The waveform shown in the Fig. 1 is the arithmetic mean
of the SNR waveform for each cycle at an angular velocity
! = 1.0 �

/s. Since SNR samples at each angle can be taken
for 15 laps, the average value at each angle is calculated and
plotted. The light-colored area represents the 95% confidence
interval of the SNR population mean calculated by the boot-
strap method. Although the 95% confidence interval is not
very reliable due to the small sample size, it may be useful to
get a distribution outline.

From the Fig. 1, it can be seen that in BT, a non-optimal
beam is often applied during beam training, resulting in a large
temporary drop in SNR. Active Inference, on the other hand,
does not cause a large temporary drop in SNR, indicating that
the beam prediction avoids the problem that occurred in BT.

Table I summarizes the SNR averages for each condition.
The values for the method with the highest average under
the same angular velocity condition are highlighted in bold.
It can be seen that Active Inference maintains a high SNR

A

B

C

D

angle [degree]

Fig. 1. SNR averages at each angle from the base station at ! = 1.0 �/s
with (A) Active Inference, (B) BT10, (C) BT60, (D) BT100.

over a wide range of channel condition changes and behaves
adaptively to them. On the other hand, BT10 and BT100
perform well under extreme angular velocity conditions (! =
0.1, 1.5 �

/s) due to their extreme search period. In addition,
BT60 has a moderately good SNR average under conditions
other than ! = 1.5 �

/s. Therefore, which search period is
optimal depends on channel condition changes.

TABLE I
SNR AVERAGES IN DB.

Method Angular velocity

0.1 �/s 0.5 �/s 1.0 �/s 1.5 �/s

Active Inference 87.0 86.6 86.7 85.3

BT10 84.5 84.4 84.3 84.3

BT60 87.1 86.5 85.1 82.5

BT100 87.2 83.4 80.8 80.2

Nondirectional 83.3 83.3 83.3 83.3

In addition, we examined whether there was a significant
difference between the mean of the Active Inference and
the one of the others. Although the population variance is
unknown and we do not assume that the variances are equal,
we assume that the distribution of the arithmetic mean follows
a normal distribution based on the law of large numbers,
and we used Welch’s test. In multiple significance testing,

Algorithm 1 Beam Training

1: Initialization: l  0, t  tcurrent, �max  0, ⇡i  
0 (i = 1, · · · , L)

2: while l < L do

3: l l + 1, ⇡max  0
4: for ⇡l  1, 2 do

5: Apply the k-th beam vector wk
l based on (10), and

observe the SNR �(t) at time t

6: if �max < �(t) then

7: �max  �(t), ⇡max  ⇡l

8: end if

9: Wait for 1 s, so that t t+ 1
10: end for

11: if ⇡max = 0 then

12: break

13: else

14: ⇡l = ⇡max

15: end if

16: end while

be set to anticipate situations where such changes cannot be
predicted in advance.

3) Nondirectional: This is the condition where the base
station continues to emit an omnidirectional beam all the time
and does not beamform. The performance of adaptively con-
trolled beamforming in response to channel condition changes
must at least exceed the performance of this nondirectional
condition.

C. Result
In Active Inference, it is better to evaluate the results after

learning because learning improves the prediction accuracy of
the optimal beam. In this study, the results of the last 15 rounds
are considered to be the post-learning results, and Active
Inference, BT, and nondirectional conditions are compared.

The waveform shown in the Fig. 1 is the arithmetic mean
of the SNR waveform for each cycle at an angular velocity
! = 1.0 �

/s. Since SNR samples at each angle can be taken
for 15 laps, the average value at each angle is calculated and
plotted. The light-colored area represents the 95% confidence
interval of the SNR population mean calculated by the boot-
strap method. Although the 95% confidence interval is not
very reliable due to the small sample size, it may be useful to
get a distribution outline.

From the Fig. 1, it can be seen that in BT, a non-optimal
beam is often applied during beam training, resulting in a large
temporary drop in SNR. Active Inference, on the other hand,
does not cause a large temporary drop in SNR, indicating that
the beam prediction avoids the problem that occurred in BT.

Table I summarizes the SNR averages for each condition.
The values for the method with the highest average under
the same angular velocity condition are highlighted in bold.
It can be seen that Active Inference maintains a high SNR
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Fig. 1. SNR averages at each angle from the base station at ! = 1.0 �/s
with (A) Active Inference, (B) BT10, (C) BT60, (D) BT100.

over a wide range of channel condition changes and behaves
adaptively to them. On the other hand, BT10 and BT100
perform well under extreme angular velocity conditions (! =
0.1, 1.5 �

/s) due to their extreme search period. In addition,
BT60 has a moderately good SNR average under conditions
other than ! = 1.5 �

/s. Therefore, which search period is
optimal depends on channel condition changes.

TABLE I
SNR AVERAGES IN DB.

Method Angular velocity

0.1 �/s 0.5 �/s 1.0 �/s 1.5 �/s

Active Inference 87.0 86.6 86.7 85.3

BT10 84.5 84.4 84.3 84.3

BT60 87.1 86.5 85.1 82.5

BT100 87.2 83.4 80.8 80.2

Nondirectional 83.3 83.3 83.3 83.3

In addition, we examined whether there was a significant
difference between the mean of the Active Inference and
the one of the others. Although the population variance is
unknown and we do not assume that the variances are equal,
we assume that the distribution of the arithmetic mean follows
a normal distribution based on the law of large numbers,
and we used Welch’s test. In multiple significance testing,

Algorithm 1 Beam Training

1: Initialization: l  0, t  tcurrent, �max  0, ⇡i  
0 (i = 1, · · · , L)

2: while l < L do

3: l l + 1, ⇡max  0
4: for ⇡l  1, 2 do

5: Apply the k-th beam vector wk
l based on (10), and

observe the SNR �(t) at time t

6: if �max < �(t) then

7: �max  �(t), ⇡max  ⇡l

8: end if

9: Wait for 1 s, so that t t+ 1
10: end for

11: if ⇡max = 0 then

12: break

13: else

14: ⇡l = ⇡max

15: end if

16: end while

be set to anticipate situations where such changes cannot be
predicted in advance.

3) Nondirectional: This is the condition where the base
station continues to emit an omnidirectional beam all the time
and does not beamform. The performance of adaptively con-
trolled beamforming in response to channel condition changes
must at least exceed the performance of this nondirectional
condition.

C. Result
In Active Inference, it is better to evaluate the results after

learning because learning improves the prediction accuracy of
the optimal beam. In this study, the results of the last 15 rounds
are considered to be the post-learning results, and Active
Inference, BT, and nondirectional conditions are compared.

The waveform shown in the Fig. 1 is the arithmetic mean
of the SNR waveform for each cycle at an angular velocity
! = 1.0 �

/s. Since SNR samples at each angle can be taken
for 15 laps, the average value at each angle is calculated and
plotted. The light-colored area represents the 95% confidence
interval of the SNR population mean calculated by the boot-
strap method. Although the 95% confidence interval is not
very reliable due to the small sample size, it may be useful to
get a distribution outline.

From the Fig. 1, it can be seen that in BT, a non-optimal
beam is often applied during beam training, resulting in a large
temporary drop in SNR. Active Inference, on the other hand,
does not cause a large temporary drop in SNR, indicating that
the beam prediction avoids the problem that occurred in BT.

Table I summarizes the SNR averages for each condition.
The values for the method with the highest average under
the same angular velocity condition are highlighted in bold.
It can be seen that Active Inference maintains a high SNR

A

B

C

D

angle [degree]

Fig. 1. SNR averages at each angle from the base station at ! = 1.0 �/s
with (A) Active Inference, (B) BT10, (C) BT60, (D) BT100.

over a wide range of channel condition changes and behaves
adaptively to them. On the other hand, BT10 and BT100
perform well under extreme angular velocity conditions (! =
0.1, 1.5 �

/s) due to their extreme search period. In addition,
BT60 has a moderately good SNR average under conditions
other than ! = 1.5 �

/s. Therefore, which search period is
optimal depends on channel condition changes.

TABLE I
SNR AVERAGES IN DB.

Method Angular velocity

0.1 �/s 0.5 �/s 1.0 �/s 1.5 �/s

Active Inference 87.0 86.6 86.7 85.3

BT10 84.5 84.4 84.3 84.3

BT60 87.1 86.5 85.1 82.5

BT100 87.2 83.4 80.8 80.2

Nondirectional 83.3 83.3 83.3 83.3

In addition, we examined whether there was a significant
difference between the mean of the Active Inference and
the one of the others. Although the population variance is
unknown and we do not assume that the variances are equal,
we assume that the distribution of the arithmetic mean follows
a normal distribution based on the law of large numbers,
and we used Welch’s test. In multiple significance testing,

A



Result (2/3)

Algorithm 1 Beam Training

1: Initialization: l  0, t  tcurrent, �max  0, ⇡i  
0 (i = 1, · · · , L)

2: while l < L do

3: l l + 1, ⇡max  0
4: for ⇡l  1, 2 do

5: Apply the k-th beam vector wk
l based on (10), and

observe the SNR �(t) at time t

6: if �max < �(t) then

7: �max  �(t), ⇡max  ⇡l

8: end if

9: Wait for 1 s, so that t t+ 1
10: end for

11: if ⇡max = 0 then

12: break

13: else

14: ⇡l = ⇡max

15: end if

16: end while

be set to anticipate situations where such changes cannot be
predicted in advance.

3) Nondirectional: This is the condition where the base
station continues to emit an omnidirectional beam all the time
and does not beamform. The performance of adaptively con-
trolled beamforming in response to channel condition changes
must at least exceed the performance of this nondirectional
condition.

C. Result
In Active Inference, it is better to evaluate the results after

learning because learning improves the prediction accuracy of
the optimal beam. In this study, the results of the last 15 rounds
are considered to be the post-learning results, and Active
Inference, BT, and nondirectional conditions are compared.

The waveform shown in the Fig. 1 is the arithmetic mean
of the SNR waveform for each cycle at an angular velocity
! = 1.0 �

/s. Since SNR samples at each angle can be taken
for 15 laps, the average value at each angle is calculated and
plotted. The light-colored area represents the 95% confidence
interval of the SNR population mean calculated by the boot-
strap method. Although the 95% confidence interval is not
very reliable due to the small sample size, it may be useful to
get a distribution outline.

From the Fig. 1, it can be seen that in BT, a non-optimal
beam is often applied during beam training, resulting in a large
temporary drop in SNR. Active Inference, on the other hand,
does not cause a large temporary drop in SNR, indicating that
the beam prediction avoids the problem that occurred in BT.

Table I summarizes the SNR averages for each condition.
The values for the method with the highest average under
the same angular velocity condition are highlighted in bold.
It can be seen that Active Inference maintains a high SNR
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Fig. 1. SNR averages at each angle from the base station at ! = 1.0 �/s
with (A) Active Inference, (B) BT10, (C) BT60, (D) BT100.

over a wide range of channel condition changes and behaves
adaptively to them. On the other hand, BT10 and BT100
perform well under extreme angular velocity conditions (! =
0.1, 1.5 �

/s) due to their extreme search period. In addition,
BT60 has a moderately good SNR average under conditions
other than ! = 1.5 �

/s. Therefore, which search period is
optimal depends on channel condition changes.

TABLE I
SNR AVERAGES IN DB.

Method Angular velocity

0.1 �/s 0.5 �/s 1.0 �/s 1.5 �/s

Active Inference 87.0 86.6 86.7 85.3

BT10 84.5 84.4 84.3 84.3

BT60 87.1 86.5 85.1 82.5

BT100 87.2 83.4 80.8 80.2

Nondirectional 83.3 83.3 83.3 83.3

In addition, we examined whether there was a significant
difference between the mean of the Active Inference and
the one of the others. Although the population variance is
unknown and we do not assume that the variances are equal,
we assume that the distribution of the arithmetic mean follows
a normal distribution based on the law of large numbers,
and we used Welch’s test. In multiple significance testing,



Result (3/3)

p = 0.05/4 = 0.0125 is equivalent to p = 0.05 for the normal
testing and p = 0.01/4 = 0.0025 is equivalent to p = 0.01.
The test results showed that the mean SNR of the Active
Inference method was significantly higher than that of the
other methods at ! = 0.5, 1.0, 1.5 �

/s (p < 0.00025), except
that of BT60 at ! = 0.5 �

/s (p = 0.030). There was also
significant difference between the mean SNR of the Active
Inference method and that of other methods at ! = 0.1 �

/s
(p < 0.00025).

In addition, Fig. 2 shows the distribution of SNR as Letter
Value Plot [12]. Letter Value Plot is an extension of the box-
and-whisker plot, which represents not only quartiles, but also
octiles, hexiles, and so on. At ! = 1.5 �

/s, it is easy to
see that there is a difference in mean values because of the
difference between the median value of Active Inference and
the one of BT. On the other hand, when ! = 1.0 �

/s, there
does not seem to be much difference between the median of
Active Inference and the one of BT60, but it can be read that
there is a difference between the octile (the 12.5 percentile).
It can be seen that the distribution of Active Inference tends
to have a generally shorter lower tail compared to that of BT.
This is likely because Active Inference prevents temporary
SNR degradation by predicting optimal beams instead of beam
training.

V. CONCLUSION

In this paper, we propose a beamforming method using
Active Inference for hierarchical codebooks. Classical beam
training methods for hierarchical codebooks always have to
adapt a non-optimal beam during search, which temporarily
degrades the SNR significantly. In addition, under conditions
with channel condition changes such as moving UEs, periodic
beam training is necessary, but it is difficult to optimize
the beam training period in advance. However, the proposed
method was expected to solve the problem of conventional
methods by predicting the optimal beam instead of searching
for it. The results confirmed that, compared to the conventional
beam training method, the active inference method not only
increases the average SNR, but also prevents transient SNR
degradation over a wide range of channel state changes. This
indicates that the proposed method using Active Inference for
hierarchical codebooks is useful for beamforming tasks with
channel condition changes.
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p = 0.05/4 = 0.0125 is equivalent to p = 0.05 for the normal
testing and p = 0.01/4 = 0.0025 is equivalent to p = 0.01.
The test results showed that the mean SNR of the Active
Inference method was significantly higher than that of the
other methods at ! = 0.5, 1.0, 1.5 �

/s (p < 0.00025), except
that of BT60 at ! = 0.5 �

/s (p = 0.030). There was also
significant difference between the mean SNR of the Active
Inference method and that of other methods at ! = 0.1 �

/s
(p < 0.00025).

In addition, Fig. 2 shows the distribution of SNR as Letter
Value Plot [12]. Letter Value Plot is an extension of the box-
and-whisker plot, which represents not only quartiles, but also
octiles, hexiles, and so on. At ! = 1.5 �

/s, it is easy to
see that there is a difference in mean values because of the
difference between the median value of Active Inference and
the one of BT. On the other hand, when ! = 1.0 �

/s, there
does not seem to be much difference between the median of
Active Inference and the one of BT60, but it can be read that
there is a difference between the octile (the 12.5 percentile).
It can be seen that the distribution of Active Inference tends
to have a generally shorter lower tail compared to that of BT.
This is likely because Active Inference prevents temporary
SNR degradation by predicting optimal beams instead of beam
training.

V. CONCLUSION

In this paper, we propose a beamforming method using
Active Inference for hierarchical codebooks. Classical beam
training methods for hierarchical codebooks always have to
adapt a non-optimal beam during search, which temporarily
degrades the SNR significantly. In addition, under conditions
with channel condition changes such as moving UEs, periodic
beam training is necessary, but it is difficult to optimize
the beam training period in advance. However, the proposed
method was expected to solve the problem of conventional
methods by predicting the optimal beam instead of searching
for it. The results confirmed that, compared to the conventional
beam training method, the active inference method not only
increases the average SNR, but also prevents transient SNR
degradation over a wide range of channel state changes. This
indicates that the proposed method using Active Inference for
hierarchical codebooks is useful for beamforming tasks with
channel condition changes.
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Conclusion
• In this paper, we propose a beam prediction beamforming method using 

Active Inference under conditions with channel condition changes such 
as moving UEs.

• Classical beam training methods for hierarchical codebooks temporarily 
degrade the SNR significantly with each beam training.

• Compared to the conventional beam training method, the active 
inference method not only increases the average SNR, but also prevents 
transient SNR degradation over a wide range of channel state changes.

• This indicates that the proposed method using Active Inference for 
hierarchical codebooks is useful for beamforming tasks with channel 
condition changes.



Thank you for your attention.
Please ask me one question at a time.


