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Beamforming for massive Hierarchical Codebook
MIMO
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Binary tree-structured beam vectors [2].
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Binary tree-structured beam vectors [2].




System Model and Problem
Formulation (1/2)

A. Beamformlng Received Signal
y(t) = VB, (OH(@®)w(t) o x(t) + a(t)e
- M antennas m. SNR
y() = B, (O[H®w(®)|*/a*(t)

Transmission rate [3]

I'(t) = log(l + y(t))

Ej '5 amplitude P, (t), channel matrix H(t), beam
N antennas U vector w(t), transmitted signal x(t), noise a(t),
Massive Multiple Output—Multiple Output (MIMO) beamforming [1]. unit vector e
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B. Hierarchical Codebook Beam vector wy,
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Binary tree-structured beam vectors [2].
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3. Observed Value (= SNR, code) 4. Learning

1. 1 =0 or not at the other layer. F =EyllnQ(5,4,B,m) —InP(3,0,4, B, m)]
2. Quantized SNR A* = argminF ,B* = argminF
A B

Learnable parameters A, B
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POMDP in Active Inference Model [4].




Improvements

1. Inference Period Tiy¢er
Coarser beam layer’s Tiyfer > Finer beam layer’s Tiyfer

2. Introducing T = 3
m = 3 means that the codebook code does not change.

3. High Recursive Transition Probability when m = 3

A stable internal state leads to stable learning of the
likelihood P(o;|ss, A).




Setting and Method

- Beamforming Settings
- 3-layer hierarchical codebook (0", 1st, 2nd)
* 30 rounds, min Tsec SNR feedback period,

. w = 0.1,0.5,1.0,1.5°/s
- Active Inference

- Observing -> Inferring the internal state -> Inferring the action -> Learning
* Inference periods Tipain = 2,1 sec of the upper or lower layer

- Beam Training (BT)
- Divide and Conquer Algorithm
* Training periods Tir,in = 10,60, 100 sec of BT10, BT60, BT100

- Nondirectional (baseline)
- Nondirectional Beam
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Fig. 1. SNR averages at each angle from the base station at w = 1.0°/s with

(A) Active Inference, (B) BT10, (C) BT60, (D) BT100.
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TABLE 1
SNR AVERAGES IN DB.

Method Angular velocity

0.1°/s 0.5°/s 1.0°/s 1.5°/s
Active Inference 87.0 86.6 86.7 85.3
BTI10 84.5 84.4 84.3 84.3
BT60 87.1 86.5 85.1 82.5
BT100 87.2 83.4 80.8 80.2

Nondirectional 83.3 83.3 83.3 83.3
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Fig. 2. Letter Value Plots of SNR at (A) w = 0.1°/s, (B) w = 0.5°/s, (C) w = 1.0°/s, (D) w = 1.5°/s




Conclusion

- In this paper, we propose a beam prediction beamforming method using
Active Inference under conditions with channel condition changes such
as moving UEs.

- Classical beam training methods for hierarchical codebooks temporarily
degrade the SNR significantly with each beam training.

- Compared to the conventional beam training method, the active
inference method not only increases the average SNR, but also prevents
transient SNR degradation over a wide range of channel state changes.

- This indicates that the proposed method using Active Inference for
hierarchical codebooks is useful for beamforming tasks with channel
condition changes.




Thank you for your attention.

Please ask me one question at a time.



