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Edge-Cloud Cooperated Video Recognition
• By deploying AI at both the edge and in the cloud, and appropriately allocating 

processing, we can optimize latency, accuracy, and power consumption
• If a certain level of accuracy is acceptable:

• Process rapidly using lightweight edge computing
• Reduce power consumption by simplifying processing

• If a certain level of latency is tolerable:
• Allocate processing to distant but power-efficient nodes
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Dividing Workload
• Data Division

• For models that take images as input, such as Yolo, it is possible to distribute processing on a 
per-frame basis between edge and cloud.

• For models like ViViT that take the temporal axis into account, higher accuracy is expected, but 
the sequence of frames is crucial, making it difficult to divide on a per-frame basis.

• Model Division
• Divide the model into initial and subsequent processing stages.
• Even if the input is video, the division does not affect accuracy.
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Two-step Processing in Edge-Cloud with Divided Model
• System

• Deploy the initial processing model at the edge, and the subsequent processing model in the 
cloud.

• Both edge and cloud connect their outputs to classifiers to perform classification.
• If the classification at the edge does not yield certainty, the subsequent processing is carried out 

in the cloud for classification.

• Reduction in Power Consumption
• If the judgment is completed at the edge alone, cloud processing can be skipped, reducing the 

associated power consumption.
• The lighter the model placed at the edge, the greater the benefit when decisions are made at the 

edge only.
• However, lighter models tend to be less accurate, which means there's a higher likelihood of 

needing to proceed to cloud judgment.
• → Adjust the model at the edge to minimize power consumption.
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Formulation of Power Consumption Minimization Problem
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• Probabilistic Optimization
• The input ! to the model is a random variable, and power consumption, latency, and accuracy are all 

random variables.
• Minimize the expected value of power consumption.
• For latency, replace the upper limit for the expected value + nσ with D.
• Optimize with respect to the distribution of input !.
• In situations where classification is easy, place a small model at the edge to reduce processing at the 

edge.
• In difficult classification situations, such as in a crowded space, place a larger model at the edge to 

reduce data transfer to the cloud.
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Approach
• Adaptation to environmental variations caused by the input video data is necessary.

• In cases where classification is easy, low power consumption is achieved by classifying with only 
the lightweight model placed at the edge.

• When classification is difficult, placing a moderately large model at the edge improves the edge's 
classification performance.

• To follow fluctuations, it is necessary to transition to the appropriate settings in a 
short time.
• There is a possibility that circumstances may change during optimization calculations.
• It is necessary to make appropriate choices with limited samples for stochastic observations.

• Apply the solution to the Speed-Accuracy Tradeoff in decision making.
• Value sensitivity: Adjust the speed of choice according to the overall value of the options.
• Transition settings quickly when the gain in low power consumption is significant.
• Search for the optimal setting over time when the gain in low power consumption is small.
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Value Sensitivity
• Overview 

• Value sensitivity refers to the tendency to make choices based on the sum of the values of 
alternatives (magnitude).

• When alternatives have high magnitude, accuracy is sacrificed to speed up the decision-making 
process.

• Advantages
• It allows waiting for a better choice in the future when alternatives have low magnitude.
• Value sensitivity plays an important role in consensus building in group decision-making.
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Value Sensitive Models
• Leaky Competing Accumulator (LCA)

• Drift	term	depends	on	the	value
• The	value	accelerate	the	state	change
• 6!"#[8] = 1 − = 6![8] − > ∑$%& 6! @ + B![8]
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Bayesian Attractor Model (BAM)
• Original BAM

• Involves Bayesian updating based on observed values
• Uses attractors and representative values
• Generative model equations:
• !! = & !!"# + ()!
• *! = (,#, ⋯ , ,$)0 !! + 12!

• Value-Based BAM（VSBAM)
• Observed and representative values changed to values of alternatives
• Value estimation obtained through reward feedback information
• Finds highest-value alternative using recognition scheme
• Representative values:
• ,% = (0,⋯ , #&'( , ⋯ , 0)
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VSBAM-LCA
• Update Rule of the Original BAM

• Drift Term: Posterior distribution update based on likelihood 
(closeness between representative value and observed value)

• Noise Term: Normal noise
• Inhibition Term: Hopfield dynamics

• Reflecting Value in the Drift Term
• Update likelihood x value as new likelihood (manipulate the Kalman gain with value)
• !!)# = !! + *

+*4(*!)# − 6*!)#)
• Since Kalman gain is almost inversely proportional to sensory uncertainty, it can be considered as 

manipulating sensory uncertainty according to value
• 1 → ,

*!
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LCA

Centralized Model Allocation with VSBAM-LCA
• VSBAM decides on the allocation for all sessions.

• Combinations of allocations become the options.
• As the number of sessions increases, the combinations become vast and do not scale.

• Observations:
• Value of the objective function.

• Options:
• Allocation for all sessions.
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Distributed Model Allocation with VSBAM-LCA
• Deploy individual VSBAM for each session to decide its allocation.

• Even if the number of sessions increases, the number of options within each VSBAM remains 
constant.

• Address inter-session arbitration in a value-sensitive manner.

• Observations:
• Value of the objective function (global).

• Options:
• Allocation for each session.
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Comparison among Centralized and Distributed VSBAMs
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• Settings
• Number of sessions: 10
• Latency constraint: 1/15 seconds
• Centralized: Controlled by a global BAM with combinations of options for each session as 

attractors
• Distributed: Controlled by an individual BAM for each session with options for each session as 

attractors

• Results
• The centralized approach 

makes slightly lower power-
consuming choices

• Both distributed and centralized 
immediately meet the 
constraints

Robustness to Model Error in Power Consumption
• Evaluate the robustness against errors in the model that predicts power 

consumption.
• There is no impact on the power consumption itself, with a slight increase in the 

number of times constraints are violated (less than once in 100-time steps).
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# of constraint violationsPower consumption

Effect of Number of Sessions
• Increasing the number of sessions results in a higher overall computational and 

communication load, leading to a greater reduction in power consumption.
• When the number of sessions is increased, it approaches the optimal solution
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# of sessions :10 # of sessions :100 # of sessions :200

Red line: solution with optimization solver
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GPU utilities
edge：15%
cloud:6%

GPU utilities
edge：7%
cloud:3%

GPU utilities
edge：0.7%
cloud:0.3%

Summary
• Summary

• We proposed a method for reducing power consumption in environments where AI models are 
divided into initial and subsequent stages and deployed at the edge and cloud.

• The proposed method achieves responsiveness to fluctuations and convergence in a distributed 
environment by applying value sensitivity.

• It also demonstrated noise tolerance.

• Future Challenges
• Evaluation in continuous time with repeated environmental changes.
• Comparison with other distributed optimization methods.
• Assessment of the impact of different methods of data division and model division.
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